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Abstract 

Determination of application times-to-solution for large-scale clustered computers 

continues to be a difficult problem in high-end computing, which will only become more 

challenging as multi-core consumer machines become more prevalent in the market.  

Both researchers and consumers of these multi-core systems desire reasonable estimates 

of how long their programs will take to run (time-to-solution, or TTS), and how many 

resources will be consumed in the execution.  Currently there are few methods of 

determining these values, and those that do exist are either overly simplistic in their 

assumptions or require great amounts of effort to parameterize and understand.  One 

previously untried method is queueing network modeling (QNM), which is easy to 

parameterize and solve, and produces results that typically fall within 10 to 30% of the 

actual TTS for our test cases.  Using characteristics of the computer network (bandwidth, 

latency) and communication patterns (number of messages, message length, time spent in 

communication), the QNM model of the NAS-PB CG application was applied to MCR 

and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 

2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed.  While 

additional work is necessary to improve the predictive capabilities of QNM, current 

results show that QNM has a great deal of promise for determining application TTS for 

multi-processor computer systems.
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Preface 

Conventional commodity serial processors are nearing their limits for speed gains and 

increased computational ability, as evidenced by Intel’s decision to discontinue research 

and development of higher clock-rate serial processors in favor of lower rate multi-core 

architectures1.  Power consumption and heat dissipation make further advances by 

increasing clock speeds and transistor density unlikely except for very specialized 

applications.  Already, major commercial processor manufacturers are exploring the use 

of multiple-core technologies to feed consumers’ desires for faster processing times and 

more feature rich (and therefore computationally expensive) environments.  This effort, 

led by the scientific community and driven by the market for processing in the gaming 

community, has sponsored a new paradigm in software engineering.  As multiple 

processor machines become more and more common, programmers are moving away 

from the serial approach, with programs considered as a linear sequence of operations, to 

a parallelized approach, with programs written to run across many processors or cores, 

each solving a small subproblem related to the original problem.  However, up to now, it 

has been difficult to accurately model the time-to-solution (TTS) for such parallel 

systems.  This information is highly desirable for a number of reasons, including:  users 

wish to know how long their programs will run, efficient batch scheduling, and resource 

utilization efficiency.  Recent research at the University of San Francisco (USF) in 

Queueing Network Modeling (QNM) suggests that QNM is a useful methodology for this 

problem of estimating TTS. 

                                                 
1 [Kanellos, 2004] 
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I – Introduction 

In today’s world, the need for computing power is becoming more pressing daily.  Our 

need to process, analyze, and store data is quickly exceeding the capabilities of small 

self-contained serial machines, such as the modern desktop PC.  Initially, the creation of 

supercomputers filled this gap:  large-scale self-contained parallel machines.  However, 

current markets, as well as the costs to develop and maintain such machines, are quickly 

making such machines less common, used only in highly specialized environments.  A 

third type of machine exists, however.  This relatively new type of machine, known as a 

cluster and built from common, and often inexpensive, commodity components for 

computation, and either commodity or specialized interconnects, is easy to construct, 

inexpensive compared to specialized, custom machines, and is incredibly pervasive in the 

market.  However, how well do clustered machines work? 

There have been many attempts to quantify the performance of clustered computers.  

One approach, Queueing Network Modeling (QNM), is a little tried, but potentially 

useful means of modeling such systems.  QNM, which has its beginnings in the modeling 

of traffic patterns, has expanded.  It is now useful for modeling everything from CPU and 

disk services, to computer systems, to service rates in store checkout lines.  This history 

of successful usage, as well as the correspondence of QNM components to commodity 

clusters, suggests that QNM is a useful tool for both the cluster designer, interested in the 

best price/performance ratio, and the user of existing machines, interested in performance 

rates and time-to-solution. 
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Figure 1 – Simple QNM Parameterization 
 

Queueing Network Modeling is an approach to complex system modeling where a 

network of analytically evaluated queues represents the computer.2  Figure 1 above 

shows a simple QNM model.  In this model, customers are shopping in a store.  

Customers enter the store and proceed to wander through the aisles, modeled as a delay 

center, assuming each customer takes on average the same amount of time to shop.  

When a customer finishes shopping, they proceed to the checkout line, where they may 

have to queue behind other customers.  The time it takes a customer to go from the end of 

the queue to the head of the queue is dependent on the number of customers preceding.  

Therefore, the checkout line is a queue, and the cashier is a queueing center.  Assuming, 

                                                 
2 [Lazowska, 1984] 
 
 

Bagger 

 

 

 
Store Aisles 0

1

2

3

  

 

 

 

 

 3 

2 

0 

1 
$ 

Checkout Line 

Enter 

Center 

Queue
Exit



 3

again on average, the bagger requires the same amount of time to service each customer, 

the bagger is a delay center.  We assume a large pool of store clerks who can do bagging, 

so that customers do not need to wait for bagging.  After visiting the bagger, the customer 

either exits the store, or returns for more shopping.  If customers are free to enter the 

store at any time, and there is no limit to the number of customers in the store at any 

given time, this example represents an open QNM model.  If, on the other hand, there is a 

limit to the number of customers that may shop at any given time (i.e.:  a maximum 

occupancy), and new customers may not enter the store once this limit is reached unless a 

shopper exits, then this example represents a closed QNM model.  Chapter II, Section C, 

Subsection 7 explores this relationship as applied to parallel computers further. 

The general goal of this research is to explore the hypothesis that QNM is an 

appropriate approach for estimating the runtimes of applications in parallel computers.  

This thesis will focus on analyzing the viability of QNM as a model for actual machine 

performance.  We will collect and present data on actual machine behavior, and then we 

will run the QNM models, and compare the results with the measured machine 

performance to see how accurately QNM can model the observed behavior. 

The remainder of this thesis is organized into the following sections: 

II. Background and Related Research 

Summary of work related to this research, both historical and recent. 

III. Methodology and Experimental Environment 

Description of the various components and methods used to create, test, and 

validate the QNM model. 
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IV. Results and Analysis 

An analysis of collected data and report of the findings. 

V. Problems Encountered and Further Research 

Description of problems encountered during the research process, and areas 

for further research on the QNM model. 

VI. Summary and Conclusion 

Summary of the research results and conclusions drawn from result analysis.
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II – Background and Related Research 

A – Scalability Review 

In parallel computing, there are two interconnected facets of scalability, both measured 

by time to solution.  The first is the Strong Scaling Problem, sometimes called Problem-

Constrained Scaling.  In this type of scaling, a given application with a given input set 

runs on increasing numbers of nodes.  Generally, one would expect that a system with 

more nodes should produce smaller times-to-solution than a system with fewer nodes.  

However, most applications on large systems begin to experience larger and larger 

overheads, due in part to the larger number of inter-node messages flowing over the 

network and also, in part, to load imbalance.  Upon reaching some critical number of 

nodes, not only does the addition of new nodes fail to increase performance, additional 

nodes may actually decrease performance.  Only embarrassingly parallel networks, such 

as seti@home, boinc, and others have largely overcome this limitation.  For these 

applications, the computations performed by individual nodes have little or no 

relationship to computations on other nodes, in effect making them embarrassingly 

parallel.  On the other hand, for tightly coupled applications that require interaction and 

communication, this limitation is very real, and places an effective cap on the size and 

type of computations these clustered systems may perform.   

The second facet of parallel computing is the scalability of the computational algorithm 

as the problem size or input size increases.  Time to solution for problems submitted to a 

cluster will typically increase as the problem or input set increases in size.  Adding 

additional nodes to the computation can mollify this effect, traditionally known as the 
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Weak Scaling Problem.  It involves balancing the increase in solution time from the 

expanded input with and the reduction in solution time from the addition of extra 

computational nodes.  This version of the problem is Classic Weak Scaling or Weak 

Scaling II in this thesis, and is sometimes called Time-Constrained Scaling.  A 

subversion of this problem, referred to as Weak Scaling I in this thesis, deals with the 

increase in time to solution as the input size increases but number of nodes remains 

constant. 

B – Programming Models Review 

Every user knows that computers run programs, and this ability gives computers their 

power.  This begs the question:  what is a program?  A program is a set of instructions 

given to the computer that allow it to receive information from the outside world, 

manipulate that information in some meaningful manner, and use the manipulated 

information to take action in the outside world.  (For our purposes, the outside world is 

anything that exists outside the processing unit, including disk drives, printers, 

keyboards, main memory, etc.)  Several different methods of providing and organizing 

these instructions exist, and are explored in the following subsections. 

1 – Electro-mechanical (Hard) Programming 

The first computers were programmed by mechanically establishing electrical 

connections (hard connections, thus hard programming) between various components.  

To change the program required rewiring the machine to reflect the new connections.  A 

simple example of this is a light switch.  The switch accepts input (flipping the switch), 

manipulates the input (creating an electrical connection within the switch), and takes 
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some action (electricity flows, and the light comes on/goes off).  To get the switch to 

perform in another manner (say three positions instead of two) requires opening the 

switch and modifying the internal working of the switch.  (This is not recommended, as it 

can be EXTREAMLY DANGEROUS!)  This method is still used in chip design, 

industrial applications, and many common items.  The read/decode/execute/store routine 

in a computer’s CPU is such a program physically embedded into the chip.  Electro-

mechanical programming is generally much less expensive than textual programming, 

discussed following, which relies on electro-mechanically programmed devices (software 

does nothing if not run on the proper hardware).  These devices, however, are often 

difficult to modify, and wear out through regular use, eventually leading to failure.  

Programmable gate arrays, while being easily modified, are a form of electro-mechanical 

programming, as it requires physically changing the interior configuration of the array to 

change the program.  Programmers often design electro-mechanical programs graphically 

using specialized CAD software.  Parallel processing requires the addition of new 

hardware to handle the parallel input. 

2 – Textual (Soft) Programming 

As computer science began to evolve, the stored-program concept emerged, giving rise 

to textual programming.  In this type of programming, actions themselves are not 

hardwired into the machine, so much as the potential for actions.  Instructions are read, 

temporary (soft) connections are made, and various circuits are activated or deactivated, 

on the fly.  This is what a typical person thinks of when mentioning the word “program.”  

Textual programming results in much greater flexibility, both in modifying the actions 

taken by the machine and in determining which program will execute.  Programs of this 



 8

type are tightly bound to the type of device they will properly run on, however.  Textual 

programming is often done using word-processing software (the text), though graphical 

means do exist. 

Because soft programming is so dependent on its hardware, several different 

programming paradigms exist to create soft programs.  The major paradigms are explored 

below. 

2.1 – Serial Programming 

Serial programming looks at instructions the way one would the directions in a 

cookbook:  as a set of logical steps done strictly in order, until no more steps remain.  

Until recently, this was, by far, the dominant paradigm.  Most serial computers, at least 

from the programmer’s and user’s views, are single-instruction, single-data (SISD).  One 

instruction executes at a time, and it executes on a single piece of information.  (In 

reality, modern computers are able to optimize code on-the-fly using pipelines and code 

reordering, but this behind-the scenes work is unseen by the user or programmer.)  

Nevertheless, high-end specialty computers of this type exist, known as vector 

computers.  These computers are single-instruction, multiple-data (SIMD).  They still 

execute one instruction at a time, but it affects multiple pieces of information. 

2.2 – Parallel Programming 

Parallel programming is less rigid in the ordering of instructions than serial 

programming.  Instead, parallel programs are the “efficiency experts” of programming.  

They see instructions based on the data dependencies and conflicts.  Those areas where 

data in one portion of the program is dependent on instructions executed elsewhere in the 
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program run (more or less) serially, and those areas where there are no dependencies and 

there are no data conflicts run concurrently (in parallel).  Depending on the underlying 

hardware, this concurrency is achieved in one of two basic means:  pseudo-parallelism 

and true parallelism. 

2.2.1 – Pseudo-parallelism 

Programmers achieve pseudo-parallelism when a parallel programming paradigm is 

used to program a SISD or SIMD machine.  Since the machine can only execute one 

instruction at a time, true instruction parallelism is impossible.  However, using a 

scheduler program it is possible to swap multiple programs onto the processor in a very 

brief period.  If done quickly enough, it will appear to the user as though the programs 

are running concurrently.  Examples of pseudo-parallelism are threads and multi-

processing common in most personal computers. 

2.2.2 – True Parallelism 

True parallelism requires that multiple processors be available, and that each processor 

be capable of executing a different instruction on different data (multiple-instruction, 

multiple-data, or MIMD3).  Programmers have many different means of exploiting this 

property, the major means of which we detail below. 

2.2.2.1 – Message Passing 

The Message Passing Interface (MPI) is currently the most common form of 

programmed parallelism.  MPI is an interface, with no specific implementation 

                                                 
3 While multiple-instruction, single-data (MISD) machines are possible in theory, few, if any, practical 
applications for such a machine exist. 
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requirements, other than the interface is maintained.  Thus, there are several different 

implementations of MPI, both public and proprietary.  MPICH, LAM, LA-MPI, and 

USF-MPI are some of the more common implementations of MPI.  MPI assumes that the 

entire program is de facto parallel, and it is the responsibility of the programmer to 

determine which portion of the code and data is relevant on each machine, based on a 

rank number given to each node on program startup.  As its name implies, MPI utilizes 

message passing to communicate between the nodes, and contains routines to 

send/receive messages, synchronize the machine, establish communication patterns, and 

perform other cluster management tasks.  MPI requires that the programmer explicitly 

determine the division of the data and the message passing structure.  MPI was the 

parallel programming model used for this research. 

In MPI, each node is a stand-alone entity, possessing its own memory, operating 

system, background processes, and other system resources.  Each node receives identical 

copies of the parallel code to execute, and a subset of the overall data set to perform 

computation on.  In general, the processes exchange data using messages to work on the 

global problem.  In the NAS-PB CG code, which formed the basis of our testing, as each 

node finishes computation on its subset of the data, it exchanges information about the 

results with other nodes in the form of messages passed between the nodes.  Once this 

communication is complete, each node then begins to reprocess the data, until the 

program finishes execution.  At this point, the subsets of the data are recombined into the 

overall set, and the results are returned to the user. 
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2.2.2.2 – Remote Procedure Calling 

In Remote Procedure Calling (RPC), each processor works independently on portions 

of the data.  When the initiating node needs to pass data or requires a service from 

another node, the initiating node performs a function call to the remote node.  The remote 

node then collects the data or performs the service and sends a procedure call return to 

the initiating machine.  This makes RPC similar to object-oriented threading on SISD and 

SIMD machines. 

2.2.2.3 – Shared Memory 

Most means of parallelism assume that each computation node in the system is 

operating with its own, local, private memory hierarchy.  This requires that nodes pass 

messages to each other when information not present locally is required, as explained in 

the following sections.  However, there are machines in which every processor has access 

to a global memory hierarchy.  In these shared memory machines, communication 

between processes occurs by writing to this global memory space, eliminating the need 

for message passing.  Most threading implementations and multi-core commodity 

machines use shared memory for inter-process communication. 

OpenMP, a type of shared memory parallel programming, allows the programmer to 

designate portions of a program as either serial or parallel, allowing the compiler to 

handle the details of actual parallelization.  During execution, when a parallel section of 

code is encountered, the OMP libraries send copies of the parallel code from the head 

node to the remote nodes.  The remote nodes then begin processing the data, using shared 

memory to communicate with the other remote nodes and the head node.  At the end of 

the parallel portion of the program, the remote nodes return the data to the head node and 
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serial execution resumes, until the next parallel portion of the program, where the process 

repeats.  In OMP, the programmer focuses on the areas of parallelism, and leaves the 

details of data division and message passing to the OpenMP libraries. 

C – Benchmarking Review 

Benchmarking is a means of attempting to measure a computer’s performance in 

relation to that of other computers over a known workload, usually by some meaningful 

output metric such as time to solution or number of computations performed.  There is 

much research to confirm the notion that there is not and can never be a perfect 

benchmark, as all users’ needs are different, and no artificial means of measurement can 

consider all possibilities.  However, benchmarks can provide useful information in one of 

two ways. 

Some benchmarks attempt to simulate the average user by attempting typical sets of 

tasks undertaken in a typical computing environment, including  opening text editors, 

calling compilers, and running complex math packages.  Benchmarks of this type are 

very difficult to create for an “average user,” as the needs of every user of a system tend 

to vary widely.  Often, when this type of benchmark is required, one is specifically 

created to model a known system usage, and the results cannot be abstracted for other 

types of usage.  New usage paradigms require a completely new benchmark. 

Other benchmarks, focus on one type of machine usage, and test many different ways 

of carrying out that specific task and the possible ways it may be used.  These 

benchmarks are easy to acquire, compared to the more general kind, and there has been 

much research into this type of benchmarking scheme. 
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This section will focus on pre-coded benchmarks.  Another set of benchmark types, 

pencil and paper benchmarks, where the researcher is free to develop his or her own 

solution, are not considered here. 

1 – Whetstone 

Designed in the 1960’s by Brian Wichmann in Whetstone, England, and first 

implemented by Harold Curnow in 1972, Whetstone is the first major synthetic 

benchmark.  Although it includes some integer code, Whetstone functions primarily on 

floating point operations with particular focus on the transcendental functions such as:  

sin, cos, atan, log, and exp.  Both scalar and vector solutions are calculated.4 

Whetstone is specifically useful to those whose work requires many floating-point 

calculations on tightly bound spatially local variables, as these are the conditions where 

Whetstone excels.5  Unfortunately, for users of mostly integer-based calculations, such as 

text editing, O/S operations, compiling, graph algorithms, and en/decrypting data, 

Whetstone will not offer very meaningful results. 

2 – Dhrystone 

R. P. Decker developed Dhrystone in 1984.  As its name implies, Dhrystone is a 

response to the inadequacies of Whetstone.  Dhrystone is CPU bound, and performs no 

I/O or system calls.6 

Dhrystone is “designed to test performance factors important in non-numeric systems 

programming.”7  It does no floating-point operations.  It is also very dependent on the 

                                                 
4 [Balsa, 1997] 
5 [Bramer, 2004] 
6 [Weboped, 2004] 
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cache size, and systems with smaller caches will notice significant performance 

degradation.  Dhrystone is also weak in the way it handles strings, and this may lead to 

unreliable results.8 

3 – Linpack 

Linpack is “a measure of a computer’s floating-point rate of execution . . . determined 

by running a computer program that solves a dense system of linear equations.”9  Jack 

Dongara designed Linpack in the 1970’s and it was used extensively in the 1980’s (and 

continues to enjoy widespread use as the benchmark used to determine the Top 500 

supercomputers) as a means of gauging computer performance.  Originally implemented 

in FORTRAN, Linpack works by solving linear equations and least squares problems.  

Researchers are free to develop their own programs to implement the Linpack 

benchmarks, as long as they solve the problems defined by the Linpack specifications.  

The problems include linear systems with general, banded, symmetric indefinite and 

positive definite, triangular, and tridiagonal square matrices, as well as QR and singular 

value decompositions of rectangular matrices as applied to least-squares problems.10 

Linpack makes a convenient tool for performance measurement, and is used by the Top 

500 Supercomputer List, because “[b]y measuring the actual performance for different 

problem sizes n, a user can get not only the maximal achieved performance Rmax for the 

problem size Nmax but also the problem size N1/2 where half of the performance Rmax 

is achieved.”11  However, Linpack is not a panacea for benchmarking.  Its use of memory 

                                                                                                                                                 
7 [Bramer, 2004] 
8 [Bramer, 2004] 
9 [Dongara, 2004a] 
10 [Dongara, 2004b] 
11 [Mauer, 2004] 
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is not very efficient, resulting in a lot of overhead from data relocation.12  Linpack is also 

computation bound and does not effectively evaluate the network interconnect. 

4 – ASCI Purple Benchmark Suite 

The ASCI Purple benchmark suite was created to guide the procurement of the ASCI 

Purple machine at LLNL and contains several large-scale benchmarks, which represent 

the planned workload for the machine.  From the ASCI Purple website:  “[T]he intent of 

these benchmarks is to measure the execution performance and compiler capabilities....  

Each of the benchmark programs represents a particular subset and/or characteristic of 

the expected ASCI workload, which consists of solving complex scientific problems 

using a variety of state-of-the-art computational techniques.  It is assumed that the details 

of hardware and/or software environment between the benchmarking configuration… 

may differ.  Differences between the hardware and/or software environment between the 

benchmarking configuration… can be compensated for by coherent[ly] scaling arguments 

to more relevant configurations.”13  The ASCI Purple Benchmarks are written for MPI 

and OpenMP. 

5 – NAS Parallel Benchmarks 

The Numerical Aerodynamic Simulation Parallel Benchmarks (NAS-PB) are described 

as:  “[A] small set of programs designed to help evaluate the performance of parallel 

supercomputers.  The benchmarks, which are derived from computational fluid dynamics 

(CFD) applications, consist of five kernels and three pseudo-applications.”14  

                                                 
12 [Dongara, 2004a] 
13 [Purple, 2001] 
14 [NAS-PB, 2004] 
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Developed at NASA’s Ames Research center, the benchmarks consist of two major 

components:  five parallel kernel benchmarks and three simulated application 

benchmarks,15 16 characterized as follows: 

Kernel Benchmarks: 

EP Embarrassingly Parallel:  Compute bound with virtually no inter-processor 

communication. 

MG Multigrid:  Tests both short and long distance communication. 

CG  Conjugate Gradient:  Tests irregular long distance communication. 

FT  Fast Fourier Transform:  Rigorous long-distance communication test. 

IS Integer Sort:  Tests both computation speed and communication 

performance. 

 

Simulated Applications: 

LU Lower/Upper:  Regular-sparse, block lower and upper triangular system 

solution.  Limited parallelism.  Very sensitive to small message 

communication performance.  Large numbers of small (40 byte) messages. 

SP Scalar Pentadiagonal:  Solves scalar pentadiagional systems resulting from 

full diagonalization of the approximately factored scheme.  Provides good 

load balance and coarse-grained communication. 

                                                 
15 [Bailey, 1994] 
16 [Bailey, 1995] 
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BT Block Tridiagonal:  Solves block tridiagonal systems of 5×5 blocks.  

Provides good load balance and coarse-grained communication. 

The pre-coded MPI-based benchmarks are configurable, at compile time, for class sizes 

and numbers of nodes.  (Pencil and paper as well as OpenMP algorithms also exist.)  

Class groups (S, W, A, B, C, and D) provide increasingly larger problems used to test 

MPI.  Certain tests have restrictions on the number of processors.  Processor allocations 

for BT and SP must be a square value (e.g. 1, 4, 9, 16 ... processors).  Allocations for CG, 

FT, IS, LU and MG must be a power of two (e.g.1, 2, 4, 8 ... processors).  There are no 

size restrictions for EP. 

D – System Modeling and Prediction Review 

Benchmarking has little value in itself, other than for comparing existing systems.  

However, when used with performance models, benchmark results can provide prediction 

of future system performance, as well as system performance under differing 

configurations (different problem sizes or numbers of nodes).  While often simplified, as 

it is impossible to account for every variable in each individual system, these models 

frequently provide reasonable forecasts of system performance when known factors, such 

as number of nodes or network speed, are changed.  Different modeling systems make 

different assumptions about the system modeled.  That is, they ignore certain 

“inessential” factors and focus on other “important” factors.  Consideration of these 

different models is essential for constructing a working model.  We will discuss these 

models in the following sections. 
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1 – RAM 

The Random Access Machine model is a favorite model for sequential computers.  It 

consists of an unbounded number of memory cells and each cell consists of an integer of 

unbounded size.  It includes most basic machine instructions, and assumes a constant 

time per instruction.  When used to analyze a particular algorithm, RAM provides results 

in the form of time complexity measures (number of instructions executed) and space 

complexity measures (number of memory references made.)  While RAM is not suited 

for parallel modeling itself, it is the progenitor of an entire class of parallel models.17 

2 – PRAM 

Parallel Random Access Machine grew from RAM.  PRAM assumes an unbounded 

collection of RAM processors, an unbounded collection of memory cells globally shared 

by all processors, and an unbounded set of local registers.18  Further, it also assumes that 

all processors in the machine operate synchronously and that interprocessor 

communication, via shared memory, requires no overhead.19  Returned results are 

complexity numbers, similar to RAM. 

3 – LogP 

Both RAM and PRAM are machine independent.  LogP handles these inadequacies by 

taking into account machine-specific parameters.  It achieves this by utilizing measured 

or estimated input variables such as:  the number of processors, the communication 

                                                 
17 [Tvrdik, 1999] 
18 [Tvrdik, 1999] 
19 [Culler, 1993] 



 19

bandwidth, the communication delay, and the communication overhead.20  It assumes 

asynchronous processors, and a maximum limit on the number of messages that may be 

in the system at a given time.21  LogP effectively measures point-to-point 

communication.  LogP, as the rest of the “Lo” family of models, derives its name from 

the mathematical symbols used in the model. 

4 – LogGP 

LogGP is an extension of the LogP model.  It incorporates long messages into LogP, 

something not previously supported.  LogGP utilizes the same inputs as in LogP, and 

adds an additional input, bandwidth for long messages, to the model.22  These specifically 

gear LogGP toward the current trends in commodity cluster computing, where both short 

and long messages often occur in the network.23 

5 – LoPC 

LoPC is another logical extension of the LogP model.  It does not handle long 

messages, as does LogGP, but it does handle contention issues with the addition of a 

contention parameter and the removal of the communication bandwidth parameter.  LoPC 

works well with non-tightly synchronized systems because of its inclusion of a contention 

parameter, which becomes more important in less synchronized systems.24 

                                                 
20 [Culler, 1993] 
21 [Culler, 1993] 
22 [Alexandrov, 1995] 
23 [Alexandrov, 1995] 
24 [Frank, 1997] 
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6 – Application Modeling 

Many models are designed around modeling and predicting the behavior of particular 

applications, and generalizing the performance of particular machines from the collected 

data.  The works of Allan Snavely25, Jack Dongara26, Ipek27,28, and Lee29 exemplify this 

type of modeling. 

7 – Queueing Network Modeling 

QNM, a type of application modeling, is a form of modeling in which a system reduces 

to a small number of relevant parameters, which can then be solved analytically using 

various solution techniques.  Originally designed to model automobile traffic across 

bridges, through tunnels, and around highway interchanges, QNM underwent successful 

modification to apply to a wide range of systems in which queueing bottlenecks can 

affect performance, including computer science.  Research by Lazowska, et al, shows that 

QNM is highly useful in modeling the performance of multiple magnetic storage devices 

servicing the needs of multiple computational units.30  

                                                 
25 [Snavely, 2001] 
26 [Dongara, 2004b] 
27 [Ipek, 2005] 
28 [Ipek, 2006] 
29 [Lee, 2006] 
30 [Lazowska, 1984] 
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Figure 2 – Cluster Computer QNM Parameterization 
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send, waiting for receipt of a message to, receiving a message, or computing because of a 

received message.  Thus, messages become the basic unit of work in the model. 

The algorithm used to solve the QNM model in the above description, is the Mean 

Value Analysis (MVA) algorithm, given in Equation 1 below.  In the equation, the 

number of centers (K) is the sum of the number of computation nodes, plus one network 

switch, plus one computation delay center.  While Figure 2 above shows a computation 

delay center for each queueing center, since each delay center adds the same constant 

average delay to a customer, using one delay center through which all messages must 

pass produces equivalent results as including a delay center for each queueing node.  The 

number of customers in the system (N) assumes one message per node, and is equal to 

the number of computation nodes.  The service demand (Dk) for the switch was originally 

number of messages divided by bandwidth plus latency (though, as explained later in 

Chapter 3, Section C2, the service demand was explicitly set to zero in some cases).  Dk 

for the processing nodes was the amount of time it took the average node to complete its 

(non-MPI) calculations  Finally, Dk for the queueing nodes (the MPI stack) was the 

amount of time MPI was active during message transfer.  Upon solution, the model 

provides the system throughput (X), the residence time for an average message at each 

center (Rk), and the average queue length for each queueing center (Qk). 

The first line of the algorithm in Equation 1 initializes the queue lengths for each 

queueing center to zero.  The second line iterates the algorithm over each customer in the 

system.  The third line iterates over each service center, calculating the residence time at 

that center for the number of customers currently determined by the previous loop on the 

second line.  For delay centers, this simply adds a delay for that customer as it receives 
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service.  For queueing centers, it adds a delay based on the number of customers waiting 

for service at that center and the service time for that center.  The fourth line determines 

the current system throughput given the delays calculated on line three and the number of 

customers determined on line two.  The final, fifth line, then updates the queue lengths at 

each center given the current system throughput and residence times as calculated by 

lines three and four.  Once all iterations are complete, X, Rk, and Qk as defined in the 

preceding paragraph, are returned to the user 

 

 
Equation 1– Single Class Mean Value Analysis Mathematical Algorithm31 

 

                                                 
31 [Lazowska, 1984] 
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III – Methodology and Experimental Environment 

This section begins by describing and defining the experimental systems and software 

in Sections A and B, and continues by describing the experimental procedure used in 

Section C.  Sections D, E, and F describe some of the pre-experimental data analysis that 

was necessary for result analysis. 

A – Experimental Systems 

1 – Keck Cluster 

The Keck Cluster is the University of San Francisco Department of Computer 

Science’s 24.67 GFlop supercomputer.  As described on its website, the Keck Cluster is 

“… a 64 node Beowulf cluster … [containing] Dual Pentium III 1GHz CPUs, 1GB RAM, 

[and a] Myrinet Network card … connected by … a 2Gbps Myrinet network used 

exclusively for communication between MPI programs.”32  “Beowulf Clusters are 

scalable performance clusters based on commodity hardware, on a private system 

network, with open source software (Linux) infrastructure.”33 

The default MPI environment on the Keck Cluster is Myrinet’s MPICH-GM v. 

1.2.4..8a, which was used to access all compilation, linkage, and execution utilities.34  

The Myrinet hardware is version LANai 9, PCI64B.  See Chapter VII-A-1 for bandwidth 

and latency details. 

The Keck Cluster is a login/logout system in which the user explicitly reserves the 

desired nodes for exclusive use and for an indefinite period.  Hence, it has no batch 
                                                 
32 [Keck, 2004a] 
33 [Beowulf, 2005] 
34 [Keck, 2004b] 
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execution control.  It runs RedHat Linux 8.0.  The University of San Francisco replaced 

the Keck Cluster and all its supporting documentation with a new cluster in the fall of 

2006. 

2 – MCR 

MCR is a multiple node supercomputer located at Lawrence Livermore National 

Laboratory.  MCR stands for Multiprogrammatic Capability Cluster. 

MCR is “a large (11.2 TF) tightly coupled Linux cluster … has 1,152 nodes, each with 

two 2.4GHz Pentium 4 Xeon processors and 4GB of memory … runs the LLNL CHAOS 

software … which incorporates … Red Hat Linux.”35  Its peak performance is 

11.06TFlop/s.36 

Compilation, linkage, and execution was performed on MCR using the native Intel 

compilers icc and ifort, both v. 8.1, under both CHAOS v. 2 and CHAOS v. 3. 

MCR uses a Quadrics QsNet Elan 3 interconnect, which delivers high bandwidth (>300 

MB/s) with low latency (<5.0 µs).37  MCR utilizes the LCRM/SLURM batch control 

system, and Quadrics MPI, a derivative of MPICH 1.2.4.38 

3 – ALC 

ALC is another multiple node supercomputer located at Lawrence Livermore National 

Laboratory.  ALC stands for ASC Linux Cluster. 

                                                 
35 [M&IC, 2004] 
36 [LCOCF, 2006] 
37 [M&IC, 2002] 
38 [Linux, 2006] 
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ALC has 960 nodes, each with two 2.4GHz Pentium 4 Prestonia processors and 4GB of 

memory, and runs the LLNL CHAOS software.39  Its peak performance is 9.2 TFlop/s.40 

Compilation, linkage, and execution was performed on ALC using the native Intel 

compilers icc and ifort, both v. 8.1, under both CHAOS v. 2 and CHAOS v. 3. 

ALC uses a Quadrics QsNet Elan 3 interconnect, which delivers high bandwidth (>300 

MB/s) with low latency (<5.0 µs).41  ALC utilizes the LCRM/SLURM batch control 

system, and Quadrics MPI, a derivative of MPICH 1.2.4.42 

ALC and MCR are very similar systems in hardware, installed software, and 

configuration.  The main differences lie in the concrete hardware components 

(motherboards, chipsets, etc.).  Thus, they provide similar, though not identical, test 

systems, and perform similarly for the same application. 

B – Experimental Software 

1 – NAS Parallel Benchmarks 

The flavor used for the benchmarking in the study is NPB 2.4, which uses MPI, and is 

commonly used by other researchers. 

We chose the CG test as the base test for collecting measurement data about the test 

systems, in part because of its common use for benchmark studies.  CG’s main loop: 

• Post non-blocking point-to-point receive to nodes containing neighboring 

data. 

                                                 
39 [ASC, 2004] 
40 [LCOCF, 2006] 
41 [LCOCF, 2006] 
42 [Linux, 2006] 
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• Perform blocking point-to-point send. 

• Wait for receive to complete. 

• Perform calculation and loop. 

provides behavior typical of many MPI programs, is easy to measure, and easy to model. 

2 – MpiP 

As described in its documentation, “mpiP is a lightweight profiling library for MPI 

applications.”43  The LLNL staff developed mpiP, and it is a publicly available resource, 

through either LLNL or SourceForge. 

MpiP intercepts an application’s linkage to MPI programs using the standardized PMPI 

interface, thus allowing mpiP to collect information concerning a variety of MPI calls.  

The application calls the mpiP routines, which then collect some system state data, such 

as the call stacks and procedure call timings, and then call the related MPI routines.  

When MPI routines return, mpiP records timing and counter information.  MpiP can be 

linked at run-time, thus avoiding the need to recompile.  Generating global statistics only 

at the end of execution, mpiP has very low overhead.  This is explored further in Chapter 

III, Section F. 

MpiP maintains several control settings, manipulated by setting system variables, 

passing options on the command line, or during program execution.  By default, mpiP 

begins timing as soon as the MPI_Init() routine is encountered in the code.  However, the 

NPB provide for one warm-up iteration of the code to ensure the necessary data is in 

memory and the cache is full.  In order to accommodate this warm-up iteration in mpiP 

                                                 
43 [MpiP, 2005] 
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and provide consistency in the measured timings, the program began execution with the 

mpiP timers disabled.  The NPB code was modified such that when NPB began timing 

code execution, the mpiP timers were also enabled and began data collection. 

3 – NPB Spreadsheet 

The NPB spreadsheet, developed as part of an LLNL Research Subcontract, is 

designed to receive, as input, selected values from the NAS-PB Suite and mpiP output 

files.  It then uses these values to calculate model inputs for the QNM Solver, as well as 

generating the command line for inMaker, a program written for this project that 

generates the QNM Solver input file for that dataset. 

The spreadsheet also performs error analysis between modeled and measured values, 

and graphically displays the results, along with a breakdown of the measured components 

and their resultant model outputs.  It also graphically compares the components of the 

model’s wall clock time for the application to the measured components of the wall clock 

time.  Additional technical details about the NPB spreadsheet are available in ancillary 

documentation. 

4 – MpiPfilter 

MpiPfilter is a simple Java program, developed as part of  an LLNL Research 

Subcontract, that filters the output files from mpiP and NAS-PB  and creates a text file 

usable as input for the NBP Spreadsheet. 

The program reads the output files generated by NPB and mpiP and compiles data on 

several metrics produced by NBP, mpiP, the Linux time command, or some combination 

of these.  These include:  the number of messages generated, average size of messages, 
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aggregate application, MPI and MPI wait times, elapsed time, MOPS/s, MOPS/s/process, 

and, when possible, CPU utilization and average elapsed time.  We collected some 

unused metrics for future research.  In addition, some identifying metadata, such as date 

run and head node PID to assist in separating the various runs.  Using the average 

message size and internally programmed data tables, the program also calculates the 

network bandwidth and latency.  Results are returned as a data file for entry into the NPB 

Spreadsheet. 

5 – QNM Solver 

The QNM (Queueing Network Model) Solver is a Java program, ported from 

algorithms and FORTRAN code in [Lazowska, 1984], and developed as part of an LLNL 

Research Subcontract.  Using input files generated by inMaker, based on values from the 

NPB spreadsheet, gathered from mpiP and NAS PB suite files, the program models the 

system as a queueing network.  The solver performs single class mean value analysis 

(Equation 1 above), multiple class MVA, single class load dependent service center 

solution, and is capable of batch execution.  We developed the new solver to allow easy 

parameterization and alteration of the modeling software in order to accommodate the 

peculiarities of the modeled environment. 

The output of the solver is entered into the NPB spreadsheet to complete the modeled 

vs. measured validations. 

6 – InMaker 

A simple Java program, developed as part of the LLNL Research Subcontract, which, 

when given parameters for the QNM solver, will create as output a file that can be used 
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as input for the QNM solver.  This simplifies execution of the QNM solver program by 

freeing the user from the repetitive task of entering service center parameters. 

7 – LBW 

LBW is a latency and bandwidth tester developed at LLNL.  According to the 

documentation, LBW “…attempts to measure the point-to-point message passing latency 

and bandwidth.  The test uses two MPI processes that repeatedly exchange messages.”44  

LBW is configurable in the number of messages passed, message length, and whether the 

communication is synchronous (blocking), or asynchronous (non-blocking). More details 

of our LBW data collection are given in Appendix A. 

C – MPI Performance Measurement and Modeling Procedure 

1 – Data Collection and Measurement 

The methods shown in Figure 3 and described subsequently were applied to the 

collection and analysis of data from the various experimental systems:45 

                                                 
44 [Faulkner, 2005] 
45 Ovals represent entry and exit points from the control flow.  Rectangles represent procedures that are 
nearly identical for each test machine.  Diamonds represent procedures that may require customization for 
each machine.  Circles represent discontinuities in the graph, continue reading from corresponding symbol 
in circle. 
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Figure 3 – Measurement and Modeling Control Flow 
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• Downloaded the NAS Parallel benchmarks from the NAS website.46 

• Configuration files for the NAS PB were modified for each machine.  Minor 

errors in benchmark code were corrected to prevent compiler errors and select 

the proper NPB timing routines, as provided by NAS. 

• Downloaded, compiled, and installed mpiP from LLNL website.47 48 

• The NAS PB executables were compiled using mpiP linkage to provide 

detailed analysis of MPI calls and timings. 

• Shell scripts were written for each suite of NAS PB tests to provide proper 

environment setup and to ease execution. 

• The shell scripts were executed, and the resultant data files containing MPI 

call and timing information were captured and stored in a directory. 

• The mpiPfilter program was run on the data to extract relevant timing and call 

information, as well as ease data file parsing. 

• The resultant output files were also stored and imported into the NPB 

spreadsheet for storage and ease of calculation. 

• Calculations in the NPB spreadsheet produced inputs for the QNM solver 

using imported data from the data files above, and created prototype 

execution commands for inMaker. 

• QNM solver input files were created using inMaker, and fed to the solver 

using single class MVA batch mode. 

                                                 
46 http://www.nas.nasa.gov/Software/NPB/ 
47 http://www.llnl.gov/CASC/mpip/ 
48 MpiP is also available through SourceForge. 
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• Outputs from the QNM solver were copied back into the NBP spreadsheet, 

which performed error analysis on the modeled vs. measured inputs and 

graphically displayed the results. 

• The final NPB spreadsheet was then inspected for continuity, alignment of 

data, error, and other anomalies to ensure the spreadsheet was functioning 

properly, that all necessary data was collected, and that all application 

executions terminated properly. 

• As necessary, the model was corrected to ensure the above states held true 

and the QNM solver was rerun on the newly corrected data. 

2 – QNM Model and Mean Value Analysis 

The QNM models were solved using the single class mean-value analysis, as shown in 

Equation 1, which is easy to parameterize and eliminates complexity due to multiple 

classes of messages and load dependent servicing times. 

Parameters for the QNM model were determined as follows: 

• The number of centers is the number of nodes allocated to solving the problem, 

plus two.  The additional nodes represent the switch and the time spent on 

computation in the CPU.  The switch and CPU are parameterized as delay 

centers, as they generally do not queue messages for servicing, whereas the 

centers representing the MPI message servicing nodes are parameterized as 

queueing centers, as they may have multiple messages waiting on servicing. 

• The number of customers is equal to the number of computational nodes in the 

system. 



 34

• The delay for the switch (when used) is determined by dividing the average 

message size by the bandwidth passing through the system and adding the 

latency.  This approximation avoids the complexity of having multiple classes 

of servicing for various messages sizes.  For our purposes, this value was 

unused and explicitly set to zero, as this produced better comparison between 

the modeled and measured results.  What switch delay does exist is included in 

the service time for the queueing centers (i.e. the MPI and interconnect stack).  

Using a nonzero switch delay center results in counting the switch delay twice 

in the baseline model. 

• The delay for the CPU is the total application time (TTS) minus the total time 

in MPI calls, with the result divided by the number of messages in the system. 

• The aggregate service demand for the queueing MPI nodes is the total time 

spent in MPI calls minus the time spent in MPI_Wait.  The product of the 

number of computational nodes and the number of messages then divides this 

value in the system to produce the input for the MVA algorithm.  Since the 

NPB CG benchmark only uses point-to-point communication, MPI_Wait 

captures all the explicit wait time. 

• The MVA was solved for queue length, residence time, and throughput. 
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D – Correlating NAS-PB CG Classes to Numeric Problem Sizes 

Because serial TTS (i.e. execution time for a single processor) could be determined for 

NPB, and is a reasonable work metric (i.e. measure of program size),49 we attempted to 

find parameters in the NPB output files that would provide for a similar work metric that 

was machine independent.  We did this because we were unable to determine an 

appropriate work metric from the NPB input files.  As a step toward our work metric, we 

noted that message size and number of messages remained constant for a given allocation 

of processors for a given problem class, as was expected.  Trial and error search then 

gave us the work metric in Equation 2 below. 

Class/ 
# P S W A B C D 

1 8 8 8 8 8  
2 2,776 13,862 27,720 148,557 297,109  
4 2,776 13,862 27,720 148,557 297,109  
8 1,191 5,937 11,870 63,587 127,169  

16 1,191 5,937 11,870 63,587 127,169 1,271,675
32 558 2,772 5,540 29,661 59,318 593,138
64 558 2,772 5,540 29,661 59,318 593,138

128 271 1,335 2,665 14,259 28,513 285,084
256 271 1,335 2,665 14,259 28,513 285,084
512 135 653 1,302 6,953 13,900 138,957 

Table 1 – Message Sizes for NPB CG 
 

                                                 
49 [Grama, 2003] 
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Class/ 
# P S W A B C D 

1 1 1 1 1 1  
2 3,152 3,152 3,152 15,752 15,752  
4 6,304 6,304 6,304 31,504 31,504  
8 22,088 22,088 22,088 110,408 110,408  

16 44,176 44,176 44,176 220,816 220,816 294,416
32 126,272 126,272 126,272 631,232 631,232 841,632
64 252,544 252,544 252,544 1,262,464 1,262,464 1,683,264

128 656,768 656,768 656,768 3,283,328 3,283,328 4,377,728
256 1,313,536 1,313,536 1,313,536 6,566,656 6,566,656 8,755,456
512 3,233,792 3,233,792 3,233,792 16,166,912 16,166,912 21,555,712 

Table 2 –Number of Messages for NPB CG 
 

Class/ 
# P S W A B C D 

2 24.284E+9 605.671E+9 2.422E+12 347.632E+12 1.39E+15  
4 48.569E+9 1.211E+12 4.844E+12 695.265E+12 2.781E+15  
8 31.343E+9 778.644E+9 3.112E+12 446.414E+12 1.786E+15  

16 62.686E+9 1.557E+12 6.224E+12 892.828E+12 3.571E+15 476.117E+15
32 39.373E+9 970.474E+9 3.875E+12 555.35E+12 2.221E+15 296.097E+15
64 78.746E+9 1.941E+12 7.75E+12 1.111E+15 4.442E+15 592.194E+15

128 48.263E+9 1.171E+12 4.666E+12 667.552E+12 2.669E+15 355.792E+15
256 96.526E+9 2.342E+12 9.331E+12 1.335E+15 5.339E+15 711.583E+15
512 58.763E+9 1.381E+12 5.481E+12 781.499E+12 3.124E+15 416.218E+15
avg 54.284E+9 1.329E+12 5.301E+12 759.149E+12 3.036E+15 474.667E+15 

Table 3 –Work Metric for NPB CG 
 

agesNumberMesseMessageSizWM ⋅= 2  
Equation 2– Formula for Parameter-Based Work Metric 

 

Table 1, Table 2, and Table 3 above show the message sizes, number of messages and 

new work metric for NPB CG.  Equation 2 shows how the new work metric is derived. 

Next, we plotted the serial runtimes and the new work metric together and examined 

the tracking.  While the work metric does exhibit some waviness, the resultant lines 

follow a near-horizontal linear trend around the average.  Spacing between the classes for 

the new work metric was also consistent with spacing between the classes for serial 

runtime.  This is shown graphically in Figure 4 below.  Because the new work metric 
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seemed so consistent with time to solution, and because it is machine independent, we 

adopted the average work metric for each class to replace time to solution.  One 

drawback of this process is that it required actually running the code to collect the data.  

However, we did this as a matter of expediency, and detailed program analysis, possibly 

done during coding, could eliminate this need. 

Work Metric and Serial Run Time
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Figure 4 – Work Metric and Serial Run Time 
 

E – Determining Bandwidth and Latency 

The first attempts at modeling utilized previously published bandwidth and latency 

data.50  However, the data being utilized were for synchronous communication models 

(where a blocking send is followed by a blocking receive), whereas NPB-CG utilizes an 

asynchronous communication model (a non-blocking receive, followed by a blocking 

                                                 
50 [Faulkner, 2005] 
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send, then a wait for the receive to complete).  The LBW test was run on each machine to 

capture latency and bandwidth values for inter/intra-node and synchronous/asynchronous 

communications, as shown in Appendices A-2 and A-3.  Configuration for LBW is as 

follows: 

• All tests contained the “-a” switch to obtain information for each MPI process. 

• All tests were submitted to the batch partition requesting two nodes, one 

processor per node active on our problem. 

• For both bandwidth testing (“-B” switch) and latency testing (“-L” switch): 

o Buffer sizes (“-b nnn” switch) assumed these values:  40, 400, 1,000, 

10,000, 50,000, 100,000, 500,000, 1,000,000, 2,500,000, 5,000,000, 

10,000,000, 15,000,000, and 20,000,000. 

o All buffer sizes were tested in both synchronous and asynchronous 

modes (“-s sync/async”). 

o Test was repeated (“-n nnn”) so that the time for each run was 

approximately 5 min. The repetition values were  15,000,000, 7,500,000 

(x2), 5,000,000, 1,750,000, 700,000, 100,000, 45,000, 20,000, 7,500, 

4,000, and 2,500. 

  We ran each test on five separate occasions, with a minimum of 48 hours between 

runs, in order to provide a random “typical” machine configuration.  The mean value of 



 39

the five runs for a given message size and communication model was determined, and 

these values were utilized for the machine’s bandwidth and latency.51 

To guard against the possibility of “outliers” in the LBW testing runs, we compared the 

mean-over-five value mentioned above to the mean-over-three-of-five, where we 

removed the highest and lowest values before calculating the mean value.  We noted no 

significant differences between these calculations, and accepted the mean-over-five as 

being easiest to implement.  Additionally, we also re-ran any test run where the shape of 

the curve of the plotted data varied significantly from previous behavior (additional 

peaks, valleys, or plateaus) as aberrant; such behavior is not what the average user under 

normal operating circumstances would typically see.  While it obviously is possible for 

the system to produce such behavior, such an abnormal state could not be long 

maintained, and is thus discounted and more appropriate results (where the shape of the 

curve did not vary significantly) used instead. 

The resultant bandwidth and latency data provide values that are typical for each 

machine under normal operating conditions, and most closely approximate behavior the 

average user would expect.  For more detailed analysis and results, see Chapter VII, 

Section A. 

F – Determining mpiP Overhead 

In order to determine the overhead associated with mpiP, the LBW test mentioned in 

Section E above was run both with and without linkage to the mpiP libraries, using the 

                                                 
51 The LBW tests could not be run on the Keck Cluster, and are not considered in the following section. 
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default MPI and mpiP configurations.  Using Equation 3 below, we calculated and 

examined the percentage of mpiP overhead. 

mpiPno

mpiPnompiP
mpiP LBW

LBWLBW
OH

−

−−
=%  

Equation 3 – Determining mpiP Overhead 
 

As seen in Table 4, Table 5, Figure 5, Figure 6, Figure 7, and Figure 8, for large 

messages (those over 10,000 bytes) mpiP on MCR has less than 2.25% overhead for 

bandwidth and less than 2.5% overhead for latency in the inter-node asynchronous cases, 

which most closely resemble the behavior of our test benchmark.  Overhead on ALC is 

even less, with large messages having less than 1.6% overhead for bandwidth and less 

than 0.8% overhead for latency.  These differences, though interesting, are secondary to 

the focus of the current research and are reserved for future exploration.  However, for 

small messages (those under 10,000 bytes) mpiP overheads become quite significant, in 

some cases exceeding 50%.   

We collected no data for the Keck Cluster, as we could not compile or execute the 

LBW routines in the available time.  However, as the Keck Cluster architecturally is 

similar to both ALC and MCR, it is reasonable to assume we would obtain similar 

results. 
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Sync Async Sync Async Sync Async Sync Async
40 -20.21% -7.69% -17.40% -31.56% 26.41% 11.49% 27.35% 44.05%

400 -11.54% -1.75% -13.06% -26.18% 15.57% 2.49% 20.22% 32.63%
1,000 -11.48% -3.76% -11.74% -16.75% 13.94% 2.61% 17.86% 18.43%

10,000 -6.83% -11.47% -1.48% -10.22% 8.92% 12.64% 7.35% 10.34%
50,000 -2.78% -3.38% 4.10% -1.99% 6.24% 5.34% 1.79% 2.37%

100,000 -7.28% -3.54% 4.63% -2.22% 13.87% 9.52% 1.57% 1.22%
500,000 1.95% 0.52% 5.46% -1.96% 1.34% -0.73% 0.75% 0.35%

1,000,000 2.01% 1.06% 5.58% -1.60% -0.12% -0.85% 0.67% 0.39%
2,500,000 2.80% 1.16% 5.61% -1.92% -0.31% -0.68% 0.58% 0.26%
5,000,000 2.02% 1.03% 5.62% -2.08% -0.59% -0.54% 0.45% 0.19%

10,000,000 2.01% 1.27% 5.63% -2.22% -0.23% 0.29% 0.37% -0.05%
15,000,000 2.97% 1.59% 5.70% -2.07% -0.77% 1.36% 0.40% -0.12%
20,000,000 3.22% 1.24% 5.72% -1.78% -1.47% -1.30% 0.39% -0.14%

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
Table 4 – mpiP Overhead on MCR 
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Figure 5 – mpiP Bandwidth Overhead on MCR 
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mpiP Latency Overhead
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Figure 6 – mpiP Latency Overhead on MCR 
 

Sync Async Sync Async Sync Async Sync Async
40 -21.09% 12.33% -22.44% -33.24% 24.12% -11.99% 28.42% 50.09%

400 -9.88% -0.95% -16.40% -26.36% 11.81% 1.11% 18.12% 33.17%
1,000 -10.08% -3.57% -13.09% -20.86% 10.68% 2.53% 12.64% 25.09%

10,000 -7.28% -8.72% -6.40% -6.18% 7.00% 9.93% 4.64% 7.42%
50,000 -2.50% 3.33% -1.27% -1.54% 2.20% 3.50% 0.14% 0.55%

100,000 -8.29% -3.54% -2.10% -0.92% -1.66% 5.66% 0.21% 0.78%
500,000 -5.21% -3.83% -1.26% 0.17% 5.69% 2.74% -0.28% -0.27%

1,000,000 -3.59% -1.59% 0.10% 0.00% 3.79% 1.72% -1.08% 0.00%
2,500,000 -2.17% -3.51% -1.09% 0.14% 4.27% 1.66% -0.28% -0.01%
5,000,000 -1.71% -1.31% -0.10% 0.32% 1.91% 0.04% -1.25% 0.24%

10,000,000 -0.62% -1.20% 0.38% 0.35% 2.21% 0.34% -1.27% 0.24%
15,000,000 -0.33% -1.42% 0.32% 0.35% 3.35% 0.68% -1.27% 0.13%
20,000,000 -0.49% -0.67% 0.23% 0.35% 4.35% -0.56% -1.22% 0.11%

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
Table 5 – mpiP Overhead on ALC 
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mpiP Bandwidth Overhead
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Figure 7 – mpiP Bandwidth Overhead on ALC 
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Figure 8 – mpiP Latency Overhead on ALC 
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Note the complexity of the above graphs.  There is no obvious explanation for either 

the complexity or bumpiness of the results (though one possibility is that inter-node 

communication is less bumpy than intra-node communication due to caching effects) and, 

as this was secondary to the focus of the research, was not explored further but left for 

future research.
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IV – Results and Analysis 

A – Overview and General Comments 

To establish the predictive capabilities of QNM, it was first necessary to establish a 

mathematical relationship between the various classes (sizes) of problem and the 

corresponding runtimes for those classes.  We outline the technical details for this 

procedure in Chapter III, Section D.  This section is concerned with analysis of the 

procedure outlined in the previous section, the results of which are contained in Sections 

B – D below. 

We ran sample benchmarks, in particular NPB CG, on all target systems for each class 

and available processor allocation.  We used these results to understand the behavior of 

actual machines-in-execution, as well as to provide target values for the model.  Data 

were collected apriori to modeling due to the often-lengthy amount of time it took for the 

experimental benchmarks to schedule and execute on the target machines. 

In general, comparisons of the results were good.  However, careful examination of the 

graphical results, shown separately for each machine below, shows unusual behavior for 

small problem sizes (classes S, W, and A) as the number of processors allocated to 

solving the problem increases.  In these cases, runtime values begin to slip off their 

previous trend-lines, creating a “hook” in the runtime plot.  We explore this effect in 

more detail in Sections B - D. 

Following collection and analysis of actual machine performance, we ran QNM models 

on the collected data and graphed the data, the results of which are also contained in 
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Sections B –D below.  Comparison of the modeled versus the measured performance is 

contained in Section E following. 

B – MCR 

This section contains graphical analysis of the data collected from MCR. 

1 –Runtimes With Respect to Class  

Note in Figure 9 the points where the application begins to show non-optimal 

performance.  This nadir, at 16 processors for class S, 64 for class W, and 256 for class 

A, indicates the processor allocation beyond which TTS degrades rather than improves 

with the addition of more computational nodes.  
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Figure 9 – MCR Measured Runtimes With Respect to Class 
 

Note that Figure 10 is very similar to the plot in Figure 9. 
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Modeled Application Times by Class
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Figure 10 – MCR Modeled Runtimes With Respect to Class 

2 –Runtimes with Respect to Processors Allocated 

In Figure 11 the horizontal axis is the work metric (Chapter III, Section D), which 

measures the problem size, from S on the left, to D on the right.  Note in Figure 11 the 

point where the application begins to show non-optimal performance, of a different sort 

than in Subsection 2.1 above.  This nadir, between classes W and A for 512 processors, 

indicates the processor allocation is in a region which TTS degrades rather than improves 

as the problem gets smaller. 
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Measured Application Times by Number of Processors
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Figure 11 – MCR Measured Runtimes With Respect to Processors Allocated  
 

Note that Figure 12 is very similar to the plot in Figure 11. 
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Modeled Application Times by Number of Processors
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Figure 12 – MCR Modeled Runtimes With Respect to Processors Allocated  

 

3 –Runtimes with Respect to Processors Allocated and Class Size 

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours. 
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Figure 13 – MCR Measured Runtimes With Respect to Processors Allocated and Class 
Size 

 

Figure 14 – MCR Modeled Runtimes With Respect to Processors Allocated and Class 
Size 
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C – ALC 

This section contains graphical analysis of the data collected from ALC. 

1 –Runtimes With Respect to Class  

Note the point in Figure 15 where the application begins to show non-optimal 

performance.  This nadir, at 16 processors for class S, 64 for class W, and 128 for class 

A, indicates the processor allocation beyond which TTS degrades rather than improves 

with the addition of more computational nodes.  
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Figure 15 – ALC Measured Runtimes With Respect to Class 

 
Note that Figure 16 is very similar to the plot in Figure 15. 
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ModeledApplication Times by Class
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Figure 16 – ALC Modeled Runtimes With Respect to Class 

 

2 –Runtimes with Respect to Processors Allocated 

Note the point in Figure 17 below class W for 32 or more processors, indicating the 

processor allocation is in a region where TTS flattens out rather than improves, as the 

problem gets smaller. 
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Measured Application Times by Number of Processors
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Figure 17 – ALC Measured Runtimes With Respect to Processors Allocated  

 
Note Figure 18 is very similar to the plot in Figure 17. 
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Modeled Application Times by Number of Processors
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Figure 18 – ALC Modeled Runtimes With Respect to Processors Allocated  

 

3 – Runtimes with Respect to Processors Allocated and Class Size 

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours. 
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Figure 19 – ALC Measured Runtimes With Respect to Processors Allocated and Class 
Size 

 

Figure 20 – ALC Modeled Runtimes With Respect to Processors Allocated and Class 
Size 
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D – Keck Cluster 

This section contains graphical analysis of the data collected from the Keck Cluster. 

1 – Runtimes With Respect to Class  

Note the point in Figure 21 where the application begins to show non-optimal 

performance.  This nadir, at 16 processors for class S, indicates the processor allocation 

beyond which TTS degrades rather than improves with the addition of more 

computational nodes.  
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Figure 21 – Keck Cluster Measured Runtimes With Respect to Class 

 
Note that Figure 22 is very similar to the plot in Figure 21. 
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Modeled vs. Measured Application Times

0.1

1

10

100

1000

10000

1 10 100

Number of Processors

Ap
pl

ic
at

io
n 

Ti
m

e 
(s

)

S-Modeled
W-Modeled
A-Modeled
B-Modeled
C-Modeled
D-Modeled

 
Figure 22 – Keck Cluster Modeled Runtimes With Respect to Class 

 

2 – Runtimes with Respect to Processors Allocated 

Note the point in Figure 23 at class S for 32 processors, indicating the processor 

allocation is in a region where TTS begins to flatten, as the problem gets smaller. 
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Modeled vs. Measured Application Times
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Figure 23 – Keck Cluster  Measured Runtimes With Respect to Processors Allocated  

 
Note that Figure 24 is very similar to the plot in Figure 23. 
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Modeled vs. Measured Application Times
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Figure 24 – Keck Cluster  Modeled Runtimes With Respect to Processors Allocated  
 

3 – Runtimes with Respect to Processors Allocated and Class Size 

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours. 
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Figure 25 – Keck Cluster Measured Runtimes With Respect to Processors Allocated and 

Class Size 

 

 
Figure 26 – Keck Cluster Modeled Runtimes With Respect to Processors Allocated and 

Class Size 
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E – Analysis of QNM Results as Compared to Measured Results 

1 – Relative Error 

Presented in this section are the relative errors of the QNM model as compared to the 

measured system performance.  The relative error was determined using Equation 4 

below. 

observed

observedQNM

WCT
WCTWCT

rorRelativeEr
−

=%  

Equation 4 – Determining Relative Error in QNM Models 

 

1.1 – Relative Error on MCR 

Figure 27 and Table 6 below show the relative error of the QNM model for MCR.  

Values range from -50.77% to 24.23% with an average error of 2.41%.  All but two of 

the error calculations fall within the 10 – 30% accuracy range that we typically expect 

from QNM models.  The two anomalous predictions occur when we run very small 

problems over very large processor allocations, which are atypical of normal MPI 

programming, and thus are situations we are unlikely to encounter during normal use. 

Note that the overhead numbers in Table 6 vary greatly in both directions, even within 

the same class.  Additionally, these values are not monotonic, as might be expected.  We 

speculate that overlap between computation and communication decreases the measured 

run times, as calculated by our methods.  Our QNM technique does not consider this 

overlap, producing a higher prediction.  These higher predictions are in areas where the 
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amount of communication and computation overlap is almost equal; therefore, overlap is 

more of an issue.  This will be addressed in future research. 
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Figure 27 – MCR Measured and Modeled Runtimes With Respect to Class Size 
 

2 4 8 16 32 64 128 256 512
S 54.284E+9 -3.00% -2.99% 15.24% 24.23% 15.09% 12.36% -3.86% -14.03% -50.77%

W 1.329E+12 -3.14% -6.44% -1.57% 7.68% 16.67% 21.12% 5.40% -3.08% -30.57%
A 5.301E+12 -1.53% -5.55% -3.93% -0.62% 2.42% 13.10% 11.56% 11.56% -15.39%
B 759.149E+12 -0.14% -3.50% -1.10% -0.91% 6.36% 15.96% 8.56% 16.49% 10.06%
C 3.036E+15 -0.02% -1.04% 1.25% 1.43% 1.96% 10.77% 14.44% 11.90% 4.54%
D 474.667E+15 -1.85% -0.63% 0.52% 1.20% 3.32% 13.30%

Class

Table 6 – Relative Error of QNM on MCR 

1.2 – Relative Error on ALC 

Figure 28 and Table 7 below shows the relative error of the QNM model for ALC.  

Values range from -10.86% to 22.50% with an average error of 3.61%.  All of the error 

calculations fall within the 10 – 30% accuracy range that is typically expected from QNM 

models. 
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Note that the overhead numbers in Table 7  vary greatly in both directions, even within 

the same class, as with MCR.  Additionally, these values are not monotonic, as might be 

expected.   

Modeled vs. Measured Application Times

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n 

Ti
m

e 
(s

)

S-Measured
S-Modeled
W -Measured
W -Modeled
A-Measured
A-Modeled
B-Measured
B-Modeled
C-Measured
C-Modeled
D-Measured
D-Modeled

Figure 28 – ALC Measured and Modeled Runtimes With Respect to Class Size 
 

2 4 8 16 32 64 128 256
S 53.724E+9 -4.34% -1.25% 11.79% 20.43% 9.60% -2.17% -2.06% -8.30%

W 1.322E+12 -2.80% -6.14% -3.51% 10.15% 16.91% 19.51% 7.83% 1.34%
A 5.278E+12 -1.67% -5.75% -4.99% -0.23% 2.59% 13.79% 10.58% 7.80%
B 756.356E+12 -0.29% -2.29% -0.78% 1.39% 6.91% 18.14% 7.33% 15.00%
C 3.025E+15 -0.01% -0.87% -0.42% 1.38% 4.21% 10.99% 14.85% 22.50%
D 486.357E+15 -1.16% -2.54% -7.07% -10.86% -2.89%

Class

 
Table 7 – Relative Error of QNM on ALC 



 64

1.3 – Relative Error on the Keck Cluster 

Figure 29 and Table 8 below shows the relative error of the QNM model for the Keck 

Cluster.  Error values range from -63.76% to -0.02% with an average error of -10.73%.  

All but four of the error calculations fall within the 10 – 30% accuracy range that we 

typically expect from QNM models.  The four anomalous predictions, again, occur when 

we run very small problems over larger processor allocations, which is atypical for MPI 

usage.  The Keck Cluster is a much smaller machine than either MCR or ALC, resulting 

in longer computation times and slower network data transfers. 
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Figure 29 – Keck Cluster Measured and Modeled Runtimes With Respect to Class Size 
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2 4 8 16 32
S 41.251E+9 -5.39% -18.92% -49.26% -59.41% -63.76%

W 1.025E+12 -0.23% -2.50% -13.76% -25.87% -39.35%
A 4.095E+12 -0.20% -1.06% -2.30% -3.32% -22.24%
B 587.498E+12 -0.08% -0.60% -0.70% -2.07% -2.63%
C 2.35E+15 -0.02% -1.04% -0.89% -1.32% -1.84%
D 296.097E+15 -0.63% -0.63% -0.63% -0.63% -0.63%

Class

 
Table 8 – Relative Error of QNM on the Keck Cluster 

 

2 - Summary 

QNM, indeed, does provide a reasonable means of determining times to solution for 

the various experimental systems.  Only six of the modeled values fell out of the 10 – 

30% typical accuracy range of QNM, all of which were under atypical run conditions.  

The average relative errors of 2.41% on MCR, 3.61% on ALC, and -10.73% on the Keck 

Cluster are all typical of the results expected from QNM, and show that QNM is a useful 

tool for determining the TTS for large-scale problems on clustered high-performance 

computers.
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V – Problems Encountered and Further Research 

A – Regionalization and Trending 

Many components of cluster computers exhibit piecewise linear behavior.  For 

example, both the performance of the system switching mechanism and the caching 

hierarchy exhibit this type of behavior.  For each of these, a plot of the performance can 

be divided into regions at the inflection points of the graph, and within each region, a 

particular linear trend dominates.  This trend provides reasonably accurate interpolation 

for intermediate values.  This section explores initial attempts to examine if clusters 

exhibit this piecewise linear behavior. 

1 – Baseline Analysis and Results 

Examination of the graphs in Chapter IV, Section B (for instance, Figure 9) above 

indicates that the application exhibits different behavior at certain critical processor 

allocations for each class.  We note this differing behavior by the U-shaped structure of 

the runtimes for small classes.  Typically, we expect the application to produce shorter 

and shorter runtimes as the number of processors allocated to solving a problem 

increases.  However, beyond the critical point, the application actually requires more and 

more time to derive a solution, which is counter-intuitive.  To account for this counter-

intuitive behavior we explored a regime structure to determine what metrics were usable 

to predict the movement from the intuitive, typical application performance region to the 

counter-intuitive, undesired application performance region.  We used trendlining over 

small subsets of the data to attempt prediction of these critical processor allocations that 
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mark the boundary between regions.  Results indicate this could be a useful metric for 

determining where these regions lie and that further investigation is required.52 

2 – Percent CPU Utilization as Regime Change Metric 

Initial analysis of the measured results shows that percent CPU utilization may be a 

good indicator for movement from the typical to the atypical regions of application 

behavior.  As more processors are allocated to a problem, the percentage of the CPU time 

used to solve that problem steadily decreases, as more system time is needed for network 

traffic.  When this utilization drops below 70 – 80 %, the application moves into the 

atypical behavior region, and begins to take longer to derive solutions than smaller 

processor allocations for the same problem.  To predict where this nadir occurs without 

having to run the program, we applied predictive linear trendlines for one, two, four, and 

eight processors to the data and extrapolated until the trendlines crossed the critical 

barrier of 80% (MCR) and 70% (ALC), where the application begins the atypical 

behavior described above.  The resulting trendline equation, when solved for the number 

of processors at the critical CPU utilization percentage and rounded up to the next power 

of two, provides a good estimate of the number of processors at the critical allocation 

point.  We analyzed classes S, W, and A, as these were the only classes exhibit such 

atypical application behavior in our runs. 

                                                 
52 Due to the nature of the system, CPU utilization data was not able to be collected for the Keck 

Cluster, and will not be discussed in this section. 
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2.1 – MCR Percent CPU Utilization and Trends 

The following graphs and tables show the results of applying this trending analysis to 

MPI runtimes on MCR.   
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Figure 30 – MCR Percent CPU Utilization and Trendlines 
 

Class Trendline Equation Predicted 
Critical CPU 
Allocation 

Predicted 
Critical CPU 
Allocation 

(Rounded Up) 

Actual 
Measured 

Critical CPU 
Allocation 

S 859.0006.0 +−= xy  10 16 16 
W 9376.00028.0 +−= xy 49 64 64 
A 9918.00054.0 +−= xy 36 64 256 

 
Table 9 – MCR Trendline Equations, Predictions, and Measured Results 

 

For classes S and W, the predictive trendline accurately predicts the critical CPU 

allocation beyond which the application exhibits atypical behavior.  For class A, the 

result from the trendline equation is within two processor allocations of the critical 
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allocation, indicates a leveling-off of the runtimes, and shows the entrance into atypical 

application behavior area.  

2.2 – ALC Percent CPU Utilization and Trends 

The following graphs and tables show the results of applying this trending analysis to 

MPI runtimes on ALC.   
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Figure 31 – ALC Percent CPU Utilization and Trendlines 
 

Class Trendline Equation Predicted 
Critical CPU 
Allocation 

Predicted 
Critical CPU 
Allocation 

(Rounded Up) 

Actual 
Measured 

Critical CPU 
Allocation 

S 7812.00005.0 +−= xy 168 256 16 
W 9342.00074.0 +−= xy 32 32 64 
A 9839.00034.0 +−= xy 84 128 128 

 
Table 10 – ALC Trendline Equations, Predictions, and Measured Results 
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For class A the predictive trendline accurately predicts the critical CPU allocation 

beyond which the application exhibits atypical behavior.  For class W, the result from the 

trendline equation is within one processor allocation of the critical allocation, indicates a 

leveling-off of the runtimes, and shows the entrance into the atypical application behavior 

area.  Class S, which exhibits nearly constant behavior on this system for very small 

processor allocations, grossly over-predicts the CPU allocation for the critical region.  

This suggests that while percentage CPU utilization may be a useful tool in predicting 

entrance into the critical region, other tools are necessary to verify the results, particularly 

if the application is exhibiting near constant behavior. 

B – Model Input Parameterization and Trending 

1 – Initial Analysis and Results 

This thesis has focused on the viability of QNM to represent accurately system 

behavior based on collected results from actual program execution.  However, QNM 

would be much more useful if it were able to predict system performance without having 

to perform actual program runs and analyze the collected performance data.  One possible 

means of doing this would be to execute small versions of the problem over small 

processor allocations and estimate the values for combinations of larger versions of the 

problem and larger processor allocations.  We examined several methods of deriving 

these estimates, mostly with disappointing results.  However, one method, predictive 

trendlining of the components of execution time, shows promise, and is the focus of this 

section. 



 71

To understand better the program execution times, they were broken down into various 

components of execution time, using data gathered by mpiP or calculated by the model.  

In particular, three components were highly important:  MPI Active Time, MPI Wait 

Time, and Compute Time.  MPI Wait Time is the amount of time the computer spends 

inside MPI calls, but not working actively on that call (i.e.  blocked for I/O).  This was 

determined by taking the MPI Wait readings directly from the mpiP output.  MPI Active 

Time is the amount of time the computer spends inside MPI calls and actively working 

on processing those calls (i.e.:  executing code in the MPI routines).  We determined this 

by taking the total time reported in MPI calls (MPI_Time) and subtracting the MPI_Wait 

time.  Compute Time is the amount of time the computer spends outside any MPI calls 

(i.e.:  is not within an MPI routine, or blocked for an MPI routine).  This was determined 

by subtracting the total MPI Time from the total Application Time.  In the following 

graphs, the darker solid triangles represent data collected from the experimental systems, 

while the lighter hollow squares represent data calculated from the QNM model.  The 

experimental computation values equate to the modeled compute time, whereas MPI 

Active uses the same label for both experimental and modeled values. 

2 – MCR Analysis and Results 

We plotted the various components of creating a QNM model for MCR, samples of 

which we show below.  For both the Computation and MPI Active components, we fit a 

power trendline to the data, creating a linear correlation in the logarithmic domain.  

Strong R2 values (> 0.9) for the trend of MPI Active time suggest that MPI Active is a 

strong candidate for prediction using trendlines.  Weak R2 values (< 0.9) for the trend of 
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Computation time suggest that Computation is not a good candidate for prediction using 

trendlines.  We ruled out trending of MPI Wait on visual inspection. 
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Figure 32 – MCR CG Class S Component Times with Trendline 
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Modeled vs. Measured Aggregate Component Times
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Figure 33 – MCR CG Class A Component Times with Trendline 

 

Modeled vs. Measured Aggregate Component Times
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Figure 34 – MCR CG Class C Component Times with Trendline 
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3 – ALC Analysis and Results 

We plotted the various components of creating a QNM model ALC, samples of which 

we show below.  For both the Computation and MPI Active components, we fit a power 

trendline to the data, creating a linear correlation in the logarithmic domain.  Strong R2 

values (> 0.9) for the trend of MPI Active time suggest that MPI Active is a strong 

candidate for prediction using trendlines.  Weak R2 values (< 0.9) for the trend of 

Computation time suggest that Computation is not a good candidate for prediction using 

trendlines.  We ruled out trending of MPI Wait was ruled out on visual inspection. 
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Figure 35 – ALC CG Class W Component Times with Trendline 
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Modeled vs. Measured Aggregate Component Times
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Figure 36 – ALC CG Class B Component Times with Trendline 
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Figure 37 – ALC CG Class D Component Times with Trendline 
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4 – Keck Cluster Analysis and Results 

We plotted the various components of creating a QNM model for the Keck Cluster, 

samples of which we show below.  For both the Computation and MPI Active 

components, we fit a power trendline to the data, creating a linear correlation in the 

logarithmic domain.  Strong R2 values (> 0.9) for the trend of MPI Active time suggest 

that MPI Active is a strong candidate for prediction using trendlines.  Weak R2 values (< 

0.9) for the trend of Computation time suggest that Computation is not a good candidate 

for prediction using trendlines.  We ruled out trending of MPI Wait on visual inspection 
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Figure 38 – Keck Cluster CG Class S Component Times with Trendline 
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Modeled vs. Measured Aggregate Component Times
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Figure 39 – Keck Cluster CG Class A Component Times with Trendline 
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Figure 40 – Keck Cluster CG Class C Component Times with Trendline 
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5 – Analysis Summary 

The tables below give the power trendline equation and R2 for each of the machines 

and classes as the problem scales strongly.  We plan analysis and trending as the problem 

scales weakly for the near future. 

QNM models MPI Wait as MPI Contention, which we do not consider in the above 

graphs or results below, since it is a value calculated from MPI Active by the QNM 

solver.  Compute Time, while showing some potential, was less than successful, with 15 

of 17 results falling below the desirable R2 value of 0.9.  MPI Active, on the other hand, 

does show much promise for trend modeling, as all but four of the results fell above the 

desired R2 value. 

Machine MCR ALC Keck Cluster 
Class S 
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=

= −

R
xy  

7493.0
131,222

2

1854.0

=

= −

R
xy  

 

 
Table 11 – Computation Trendline Equations, Predictions, and Measured Results 
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Machine MCR ALC Keck Cluster 
Class S 

9994.0
0337.0

2

137.1

=

=

R
xy  

9995.0
0313.0

2

1271.1

=

=

R
xy  

9802.0
0208.0

2

8236

=

=

R
xy  

Class W 

9976.0
0971.0

2

0038.1

=

=

R
xy  

9956.0
096.0

2

9936.0

=

=

R
xy  

4774.0
2932.0

2

3144.0

=

=

R
xy  

Class A 

9956.0
1814.0

2

947.0

=

=

R
xy  

9947.0
1772.0

2

9481.0

=

=

R
xy  

3784.0
8293.0

2

4522.0

=

=

R
xy  

Class B 

9732.0
842.11

2

6831.0

=

=

R
xy  

9129.0
201.11

2

7052.0

=

=

R
xy  

9826.0
185.20

2

6777.0

=

=

R
xy  

Class C 

9131.0
645.44

2

5806.0

=

=

R
xy  

9251.0
33.53

2

5326.0

=

=

R
xy  

8943.0
525.62

2

6061.0

=

=

R
xy  

Class D 

8932.0
235,2

2

3955.0

=

=

R
xy  

9394.0
1.305,1

2

4792.0

=

=

R
xy  

 

 
Table 12 – MPI Active Trendline Equations, Predictions, and Measured Results 

 

C – Class and Problem Sizes, Work Metric, and Data Set Size 

As discussed in Chapter III above, a work metric was necessary to determine the 

performance of NAS-PB as it relates to the benchmark problem size.  Work metrics used 

in this thesis are highly dependent on collecting data from the program in execution or 

from detailed analysis of the code, and thus the communication patterns used to solve the 

problem.  While we explored various input parameters for NBP for potential worth as a 

work metric, no metric or combination of metrics proved satisfactory.  This indicates 

further research, including reexamination of the NPB input parameters, to divorce the 

work metric from both the need to analyze the program code and the collected observed 

behavior.  Determination of a data set size, which would include the amount of data in 

memory, which is not dependent on such analysis and data collection is highly desirable 

and should receive future consideration. 
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D – Switch Delay versus No Switch Delay 

Initial investigation included a delay server, as shown in Figure 1in Chapter I.  In later 

refinement of the model, we found that, for MCR and ALC, we realized better results 

with the switch delay removed from the model.  In practical terms, this means that we 

recalculated the model with the switch delay set to zero.  However, for the Keck Cluster, 

this was not always the case.   

1 – MCR Analysis 

Following are sample graphs from MCR showing the measured values (blue), the 

model excluding the switch delay (magenta), and the model including the switch delay 

(green). 
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Figure 41 – MCR Class S Model Comparison 
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Modeled vs. Measured Application Times
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Figure 42 – MCR Class A Model Comparison 
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Figure 43 – MCR Class C Model Comparison 
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2 – ALC Analysis 

Following are sample graphs from ALC showing the measured values (blue), the 

model excluding the switch delay (magenta), and the model including the switch delay 

(green). 
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Figure 44 – ALC Class S Model Comparison 
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Modeled vs. Measured Application Times
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Figure 45 – ALC Class A Model Comparison 
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Figure 46 – ALC Class C Model Comparison 
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3 – Keck Cluster Analysis 

Following are sample graphs from the Keck Cluster showing the measured values 

(blue), the model excluding the switch delay (magenta), and the model including the 

switch delay (green). 
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Figure 47 – Keck Cluster Class S Model Comparison 
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Modeled vs. Measured Application Times
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Figure 48 – Keck Cluster Class A Model Comparison 
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Figure 49 – Keck Cluster Class C Model Comparison 
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4 – Final Analysis 

The above results indicate more research as to why MCR and ALC show better 

modeling without the switch delay and the Keck Cluster shows better modeling with the 

switch delay.  One possibility is that the data used to determine bandwidth and latency 

consider the switch delay for MCR and ALC, therefore including the switching 

characteristics in the model separately is redundant, and the data for the Keck Cluster 

does not, thus necessitating the inclusion of an explicit switch delay in the model.  This 

and other possibilities will also be explored in the near future. 

E – Measure and Predict Additional Systems 

While the research preceding is sufficient to provide a proof-of-concept for QNM 

modeling, the use of three test systems, each utilizing a Linux derivative, is insufficient to 

prove the universality of the concept, and its applicability to either other operating 

systems or different clusters.  Therefore, the QNM modeling and data collection 

procedure needs to be performed on additional computers and under different POSIX 

derivatives.  Candidates for new systems include BlueGene/L (Linux), Thunder (Linux), 

and Berg/NewBerg (AIX), all machines at LLNL.  Ultimately, the modeling procedure 

should also be performed under non-POSIX systems as well. 

F – Measure and Predict Additional Applications 

As in Section E, above, the use of NPB-CG is sufficient for proof-of-concept testing, 

but is not so for proof of universal application.  Additional testing is required to expand 

the QNM concept for more general use, beginning with application of QNM to the rest of 

the NBP suite, in particular FT and BT.  Once the NBP suite is fully analyzed, testing 



 87

should continue with other programs, such as those mentioned in the benchmarking 

review in Chapter II. 

G – Refine Model for Interconnect 

The current model of the interconnect between computation nodes assumes a flat 

switching hierarchy and a single queueing node which incurs the total delay for the entire 

switching process as well as any overhead incurred by the MPI and interconnect protocol 

stacks.  Continued examination of this switching model is necessary to improve accuracy 

in the QNM modeling process. 
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VI – Summary and Conclusion 

Queueing Network Modeling is a possible solution to the modeling problems facing 

modern high-performance computing.  When given proper values for machine, network, 

and program characteristics, QNM can accurately predict runtimes and performance on a 

given machine with a given problem within the typically expected accuracy of QNM, 

which is 10 – 30 %, as the data in Chapter IV clearly shows. 

Apriori parameter prediction for the QNM model does show some level of difficulty, as 

does prediction of the movement of MPI from typical (decreasing runtimes as processors 

are added) to atypical (increasing run times as processors are added) behavior.  However, 

the QNM method itself, when these hurdles are overcome, promises to be a very 

powerful tool in both the design and operation of high-performance computers.  Possible 

uses of QNM are batch system scheduling, cost-benefit analysis, and better 

hardware/software engineering tools. 

QNM is easy to understand, simple to parameterize (given above caveat about 

determining the parameters), and mathematically uncomplicated.  The QNM algorithm 

itself is highly efficient and requires very little computation time to derive a solution.  As 

research continues to make headway on the difficulties mentioned in Chapter V, QNM 

shows great promise to become one of the leading tools used for performance prediction 

and modeling of large-scale high-performance computers.



 89

VII – Appendices 

Appendix A – Latency and Bandwidth Data 

1 – Keck Cluster 

The Keck Cluster Latency and Bandwidth Curve in Figure 50 was constructed from 

data available for MPICH-GM with GM 1.x from the Myrinet website.53  The 

Myrinet documentation reports the tests were conducted using the PALLAS MPI 

Benchmark Suite V2.2, MPI-1 part, Release 2.4.19.  Figure 50 plots the results for the 

PingPong benchmark, which is the most similar to the LLNL LBW benchmark, while 

Table 13 gives raw data figures.  We used the Myrinet values, as we had difficulty 

modifying the LLNL LBW configuration and makefile for the Keck Cluster. 
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Figure 50 – Keck Cluster Latency and Bandwidth Curve 
 

                                                 
53 www.myrinet.com/myrinet/performance 
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Number of Bytes Latency (µs) MBytes/s
0 8.05 0

1 8.14 0.12

2 8.14 0.23

4 8.18 0.47

8 8.29 0.92

16 8.61 1.77

32 8.77 3.48

64 9.03 6.76

128 12.08 10.1

256 14.83 16.45

512 17.89 27.29

1,024 24.31 40.17

2,048 36.88 52.95

4,096 55.67 70.17

8,192 95.27 82

16,384 116.47 134.15

32,768 186.97 167.14

65,536 327.91 190.6

131,072 609.82 204.98

262,144 1,174.19 212.91

524,288 2,303.11 217.1

1,048,576 4,561.19 219.24

2,097,152 8,898.06 224.77

4,194,304 17,573.37 227.62  
 Table 13 – Keck Cluster Latency and Bandwidth Raw Data 

2 – MCR 

Figure 51 and Figure 52 plot the results for the LBW benchmark on MCR, while Table 

14, Table 15, and Table 16 give raw data figures for bandwidth and latency.  All model 

calculations assume internode asynchronous communication, which is the case for the 

NAS-PB CG benchmark using one processor per node. 

The primary peak in the intranode bandwidth indicates the transfer rate from data in the 

cache (cache hits); whereas the trailing plateau represents transfer rates from main 

memory (cache misses).  Internode communication is not nearly as influenced by caching 

effects, and thus does not show the peaks noticed in intranode communication.  

Bandwidth for asynchronous communication between nodes is much higher for large 
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messages than bandwidth for synchronous communications, as much of the MPI time that 

is taken making the non-blocking receive call can be processed in parallel with the send, 

resulting in faster effective transfer rates.  With synchronous communication, this call 

overhead must be processed serially, and results in less data transfer. 

Bandwidth

0

100

200

300

400

500

600

10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

B
an

dw
id

th
 (1

0e
6 

B
/s

)

Intra-Sync Intra-Async Inter-Sync Inter-Async
 

Figure 51 – MCR Bandwidth Curve 
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Latency
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Figure 52 – MCR Latency Curve 
 

Sync Async Sync Async Sync Async Sync Async
40 3.9726 4.811 4.52 5.367 10.156 8.284 9.248 7.462

400 21.2054 20.8654 26.8278 31.5842 19.018 19.19 15.366 12.756
1,000 51.3228 51.1248 58.4316 66.9286 19.484 19.464 17.472 15.1

10,000 367.3934 420.6224 217.3698 262.9602 27.326 23.742 46.674 38.276
50,000 541.001 516.7798 292.6886 349.9428 95.33 94.266 172.334 145.336

100,000 429.87 426.9608 305.3328 377.29 245.994 226.008 330.388 270.578
500,000 290.3044 278.7632 317.5568 389.7146 1,768.266 1,818.076 1,586.674 1,292.112

1,000,000 281.9118 275.782 321.4458 394.5908 3,596.704 3,664.92 3,135.946 2,551.376
2,500,000 281.3806 277.3858 320.2202 392.3956 8,999.088 9,163.904 7,866.54 6,386.956
5,000,000 279.2804 276.9606 322.594 394.3502 18,062.88 18,170.846 15,595.29 12,702.79

10,000,000 280.022 277.765 322.8158 394.317 36,238.014 36,583.034 31,147.338 25,338.628
15,000,000 281.3414 278.8056 322.9122 395.3364 54,063.476 55,604.676 46,708.204 37,962.298
20,000,000 281.4702 278.1846 322.9528 395.4602 71,930.252 72,471.956 62,278.82 50,676.188

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
 Table 14 – MCR Bandwidth and Latency Data with mpiP 
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Sync Async Sync Async Sync Async Sync Async
40 0.08 0.0499 0.0403 0.0549 0.0586 0.0602 0.1763 0.1594

400 0.1465 0.1365 0.3491 0.5231 0.2119 0.088 0.2959 0.6359
1,000 0.4411 0.2852 0.6321 0.2549 0.0945 0.0716 0.1392 0.6904

10,000 3.6091 6.7215 0.8565 4.9315 0.194 0.2643 0.8376 1.8696
50,000 20.5529 30.4183 0.7395 4.6366 3.5088 3.9649 2.8005 6.6513

100,000 15.1763 15.1993 0.9421 2.2082 9.5574 13.8706 5.2579 13.6717
500,000 4.2409 5.3838 0.9253 4.8311 17.1772 37.7537 26.1131 66.6365

1,000,000 2.9619 2.4008 0.8293 5.2299 14.7897 34.077 51.919 126.925
2,500,000 4.1393 1.6986 0.7837 5.2014 47.0401 88.984 127.385 285.3246
5,000,000 3.2725 2.5598 0.8914 4.8161 86.3938 85.5093 217.7568 526.7418

10,000,000 3.3342 2.5839 0.8104 5.5202 251.3583 473.3553 379.5457 1,051.9095
15,000,000 3.6915 1.8167 0.7744 5.1362 446.9563 1,509.5416 559.5785 1,545.5308
20,000,000 3.592 3.0111 0.7757 5.2378 384.4657 736.5662 769.6137 1,949.7053

Message 
Size

Bandwidth (10e6 B/s) Latency (µs)
Intra Inter Intra Inter

 
 Table 15 – MCR Bandwidth and Latency Standard Deviation with mpiP 
 

Sync Async Sync Async Sync Async Sync Async
40 4.9790 5.2116 5.4722 7.8422 8.0340 7.4300 7.2620 5.1800

400 23.9704 21.2372 30.8588 42.7874 16.4560 18.7240 12.7820 9.6180
1,000 57.9796 53.1218 66.2044 80.3926 17.1000 18.9680 14.8240 12.7500

10,000 394.3124 475.0980 220.6384 292.8932 25.0880 21.0780 43.4780 34.6900
50,000 556.4770 534.8658 281.1688 357.0646 89.7320 89.4880 169.2960 141.9780

100,000 463.6230 442.6388 291.8298 385.8690 216.0260 206.3560 325.2840 267.3200
500,000 284.7436 277.3154 301.1294 397.4968 1,744.9640 1,831.3920 1,574.8600 1,287.5560

1,000,000 276.3436 272.8988 304.4656 400.9956 3,600.9660 3,696.4320 3,115.0380 2,541.5640
2,500,000 273.7220 274.1934 303.2010 400.0838 9,026.6940 9,227.0960 7,821.3160 6,370.4100
5,000,000 273.7434 274.1276 305.4150 402.7298 18,169.2860 18,268.9700 15,525.4200 12,678.5020

10,000,000 274.4934 274.2700 305.6090 403.2826 36,321.9920 36,477.1960 31,031.1220 25,351.2540
15,000,000 273.2296 274.4400 305.4950 403.7056 54,480.4920 54,859.9200 46,523.3720 38,008.9560
20,000,000 272.6774 274.7892 305.4882 402.6148 73,002.8640 73,425.4520 62,034.7640 50,747.5640

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
 Table 16 – MCR Bandwidth and Latency Data without mpiP 

3 – ALC 

Figure 53 and Figure 54 plot the results for the LBW benchmark on ALC, while Table 

17, Table 18, and Table 19 gives raw data figures for bandwidth and latency.  All model 

calculations assume internode asynchronous communication, which is the case for the 

NAS-PB CG benchmark using one processor per node. 

Notice that the bandwidth curves are similar to those produced by MCR.  MCR and 

ALC are very similar machines, and typically produce very similar results under the same 

test conditions.  This is due to the same caching and parallelization of non-blocking calls, 

as explained above for MCR, and is what one would expect for a closely related 

architecture. 
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Figure 53 – ALC Bandwidth Curve 
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Figure 54 – ALC Latency Curve 
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Sync Async Sync Async Sync Async Sync Async
40 5.9764 4.9004 6.6976 9.4790 6.7900 8.3400 5.9880 4.2120

400 25.1672 22.2102 36.3244 49.5768 15.7440 18.0320 11.0480 8.0980
1,000 61.4002 55.9302 77.3420 101.1014 16.3920 18.1380 13.0820 9.8840

10,000 419.0350 490.8522 241.1840 277.2746 23.8720 20.4620 41.6340 35.8120
50,000 599.6436 570.2200 298.9056 330.1730 85.0620 90.1880 167.5600 151.2780

100,000 511.2758 486.5640 311.5230 350.6030 202.9900 204.6100 321.7060 286.6160
500,000 327.8804 317.1758 320.7300 360.6768 1,523.0360 1,564.1020 1,562.5880 1,389.5660

1,000,000 318.6446 310.0188 318.1268 362.5292 3,141.6340 3,204.3580 3,155.8840 2,768.1380
2,500,000 312.9746 313.7038 322.9082 363.2792 7,896.4460 7,981.0700 7,760.1120 6,884.3620
5,000,000 312.2842 309.4832 319.3196 363.0602 15,909.9160 16,016.8440 15,745.2580 13,759.4960

10,000,000 310.8564 309.6742 319.4644 363.3290 32,148.1000 31,944.8020 31,471.9480 27,492.1060
15,000,000 308.8984 307.9560 319.6816 363.5872 47,715.7280 48,122.0200 47,196.8900 41,216.3540
20,000,000 307.2910 307.1802 319.8050 363.9454 64,053.6120 64,898.2160 62,880.0960 54,934.4660

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
 Table 17 – ALC Bandwidth and Latency Data with mpiP 
 

Sync Async Sync Async Sync Async Sync Async
40 0.032 0.0503 0.04 0.1179 0.0823 0.1475 0.0495 0.039

400 0.1699 0.0799 0.393 1.2765 0.2509 0.1205 0.0919 0.0799
1,000 0.3682 0.3505 0.8688 4.3586 0.1891 0.2298 0.1128 0.1193

10,000 1.333 14.7197 2.9456 0.2176 0.1568 0.1963 0.0559 0.2741
50,000 17.8992 11.8619 3.6162 3.6216 2.4068 7.5937 0.2303 1.0505

100,000 38.3299 28.7826 5.3652 3.2134 14.1377 20.0818 0.7493 2.808
500,000 4.9798 4.3932 4.3423 1.1353 15.7547 27.7759 5.79 11.7985

1,000,000 1.7375 1.9569 4.5587 1.6141 40.5172 22.3529 14.1584 18.8678
2,500,000 2.8588 2.4972 4.2779 1.4647 223.3009 166.0422 30.9485 57.9774
5,000,000 1.5366 2.7166 4.4801 1.632 103.8533 197.1605 89.7334 122.5853

10,000,000 2.8239 2.0616 2.5979 1.3202 835.4868 364.3385 187.661 277.9518
15,000,000 3.0522 5.1042 2.5242 1.2745 1,371.6671 302.5326 282.0873 410.9768
20,000,000 3.2741 6.7031 2.9886 1.3407 2,104.2451 1,791.2003 358.355 473.5005

Message 
Size

Bandwidth (10e6 B/s) Latency (µs)
Intra Inter Intra Inter

 
 Table 18 – ALC Bandwidth and Latency Standard Deviation with mpiP 
 

Sync Async Sync Async Sync Async Sync Async
40 4.7162 5.5048 5.1944 6.3286 8.428 7.34 7.69 6.322

400 22.6806 21.9986 30.369 36.5076 17.604 18.232 13.05 10.784
1,000 55.2124 53.9318 67.2184 80.013 18.142 18.596 14.736 12.364

10,000 388.5484 448.0326 225.7582 260.151 25.544 22.494 43.564 38.47
50,000 584.6418 589.1928 295.113 325.0722 86.936 93.344 167.796 152.11

100,000 468.8678 469.3568 304.9666 347.3834 199.63 216.192 322.374 288.846
500,000 310.8074 305.0264 316.6902 361.2918 1,609.666 1,606.944 1,558.15 1,385.78

1,000,000 307.2104 305.099 318.4326 362.5274 3,260.692 3,259.574 3,121.812 2,768.038
2,500,000 306.183 302.6926 319.3902 363.805 8,233.526 8,113.64 7,738.196 6,883.364
5,000,000 306.943 305.4298 319.0074 364.227 16,214.356 16,023.622 15,548.572 13,793.11

10,000,000 308.9394 305.952 320.674 364.5834 32,857.978 32,053.816 31,071.87 27,559.196
15,000,000 307.8658 303.582 320.7078 364.8706 49,314.166 48,447.148 46,596.196 41,270.232
20,000,000 305.7862 305.112 320.5504 365.2064 66,837.706 64,534.358 62,114.756 54,993.356

Latency (µs)
Intra InterMessage 

Size
Intra Inter

Bandwidth (10e6 B/s)

 
 Table 19 – ALC Bandwidth and Latency Data without mpiP 
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Appendix B – Sample NPB Spreadsheet 

In this section, we present a sample of the NPB spreadsheet, which contains actual data 

collected from MCR and is used to create the graphs and results presented in Chapter IV.  

Spreadsheets for ALC and the Keck Cluster are similar, and work in the same manner.  

The headings highlighted in black denote the major sections of the spreadsheet.  The 

Collected Values section contains mpiP and NAS-PB data collected from the machines 

during the actual execution of the application, as provided by the mpiPfilter program, and 

is the starting point for analysis.  The Analysis Views section contains various analyses 

of the collected data from different viewpoints of the system.  The Utilization Views 

section contains information about the utilization of various system resources.  The 

Network View section contains analysis of the network resource utilization.  The Model 

Views section contains two related subsections, Model Inputs, which collects the results 

of the analyses in the previous sections as inputs for the QNM model, and Model 

Outputs, which contain the results from running the QNM model on the provided inputs.  

The Validation View section contains error analysis information used to validate the 

model.  The Graphical View section contains data from the previous sections, arranged to 

make graphical display easier. 
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Label Symbol Derivation Unit Type 1 2 4 8 16 32 64 128 256 512

Number of CPUs P - CPU IO
1 2 4 8 16 32 64 128 256 512

Application - - Text I
CG S CG S CG S CG S CG S CG S CG S CG S CG S CG S

Machine - - Text I
mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2

Run Date - - Date I
2/25/06 2/25/06 2/25/06 2/26/06 2/26/06 2/25/06 2/25/06 2/25/06 2/25/06 2/25/06

mpiP Collector 
PID - - # I

11479 11815 21275 16955 16400 28358 4400 11260 26277 26042

Aggregate 
Application Time App_Time - s I

216.8E-3 304.0E-3 375.8E-3 725.8E-3 1.388E+0 3.554E+0 7.516E+0 20.06E+0 44.28E+0 180.2E+0

Aggregate MPI 
Time MPI_Time - s I

55.0E-6 94.62E-3 218.8E-3 497.4E-3 1.026E+0 2.762E+0 6.04E+0 16.68E+0 37.78E+0 164.6E+0

Aggregate 
MPI_W AIT MPI_Wait - s A

000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

Number of 
Messages Sent M - msg A

1.0E+0 3.152E+3 6.304E+3 22.088E+3 44.176E+3 126.272E+3 252.544E+3 656.768E+3 1.314E+6 3.234E+6

Average Sent 
Message Size L - B A

8.0E+0 2.776E+3 2.776E+3 1.191E+3 1.191E+3 558.4E+0 558.4E+0 271.083E+0 271.082E+0 134.802E+0

Average CPU 
Utilization U*

CPU - # A
84.00% 87.70% 81.30% 81.65% 80.36% 79.41% 79.14% 72.57% 66.19% 60.68%

Average Elapsed 
Time - - s A

428.0E-3 323.0E-3 343.5E-3 318.75E-3 344.125E-3 740.562E-3 1.047E+0 1.321E+0 1.592E+0 2.721E+0

Elapsed Time - - s I
214.0E-3 152.0E-3 94.0E-3 90.0E-3 88.0E-3 112.0E-3 116.0E-3 156.0E-3 174.0E-3 350.0E-3

Mop/s - - Mop/s I
310.826E+0 440.75E+0 715.166E+0 736.326E+0 769.882E+0 601.456E+0 569.858E+0 427.014E+0 387.826E+0 210.166E+0

Mop/s/process - - Mop/s I
310.826E+0 220.374E+0 178.792E+0 92.042E+0 48.116E+0 18.794E+0 8.904E+0 3.334E+0 1.516E+0 410.0E-3

Bandwidth BW (Linear Interpolation) B/s I
1.568E+6 122.319E+6 122.319E+6 84.908E+6 84.908E+6 52.715E+6 52.715E+6 30.273E+6 30.273E+6 17.045E+6

Latency Lat - s I
5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6

Collected Values

No Switch DelayParameters

NAS-PB

mpiP

Linux Time

Network Info.
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Application Time App_Time - s I
216.8E-3 304.0E-3 375.8E-3 725.8E-3 1.388E+0 3.554E+0 7.516E+0 20.06E+0 44.28E+0 180.2E+0

MPI Time MPI_Time - s I
55.0E-6 94.62E-3 218.8E-3 497.4E-3 1.026E+0 2.762E+0 6.04E+0 16.68E+0 37.78E+0 164.6E+0

Non-MPI Time Non_MPI App_Time - MPI_Time s C
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

MPI_WAIT MPI_Wait - s A
000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Application Time AT* App_Time / P s CIV
216.8E-3 152.0E-3 93.95E-3 90.725E-3 86.75E-3 111.063E-3 117.438E-3 156.719E-3 172.969E-3 351.953E-3

MPI Time MT* MPI_Time / P s CIV
55.0E-6 47.31E-3 54.7E-3 62.175E-3 64.1E-3 86.313E-3 94.375E-3 130.313E-3 147.578E-3 321.484E-3

Non-MPI Time - (App_Time - MPI_Time) / P s C
216.745E-3 104.69E-3 39.25E-3 28.55E-3 22.65E-3 24.75E-3 23.063E-3 26.406E-3 25.391E-3 30.469E-3

MPI_WAIT WT* MPI_Wait / P s C
000.0E+0 9.563E-3 17.798E-3 15.402E-3 15.056E-3 28.368E-3 34.256E-3 61.952E-3 80.041E-3 243.134E-3

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
55.0E-6 37.747E-3 36.902E-3 46.773E-3 49.044E-3 57.944E-3 60.119E-3 68.361E-3 67.537E-3 78.35E-3

Application Time - App_Time / M s C
216.8E-3 96.447E-6 59.613E-6 32.859E-6 31.42E-6 28.146E-6 29.761E-6 30.544E-6 33.711E-6 55.724E-6

MPI Time - MPI_Time / M s C
55.0E-6 30.019E-6 34.708E-6 22.519E-6 23.216E-6 21.873E-6 23.917E-6 25.397E-6 28.762E-6 50.9E-6

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

MPI_WAIT - MPI_Wait / M s C
000.0E+0 6.068E-6 11.293E-6 5.578E-6 5.453E-6 7.189E-6 8.681E-6 12.074E-6 15.599E-6 38.495E-6

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
55.0E-6 23.951E-6 23.415E-6 16.941E-6 17.763E-6 14.684E-6 15.235E-6 13.323E-6 13.163E-6 12.405E-6

Application Time - App_Time / (P * M) s C
216.8E-3 48.223E-6 14.903E-6 4.107E-6 1.964E-6 879.55E-9 465.018E-9 238.621E-9 131.682E-9 108.836E-9

MPI Time - MPI_Time / (P * M) s C
55.0E-6 15.01E-6 8.677E-6 2.815E-6 1.451E-6 683.544E-9 373.697E-9 198.415E-9 112.352E-9 99.414E-9

Non-MPI Time -
(App_Time - MPI_Time) / (P * 

M) s C
216.745E-3 33.214E-6 6.226E-6 1.293E-6 512.722E-9 196.005E-9 91.321E-9 40.206E-9 19.33E-9 9.422E-9

MPI_WAIT - MPI_Wait / (P * M) s CV
000.0E+0 3.034E-6 2.823E-6 697.283E-9 340.829E-9 224.66E-9 135.644E-9 94.328E-9 60.935E-9 75.185E-9

MPI Active Time CPUMsgActive
(MPI_Time - MPI_Wait) / (P * 

M) s CO
55.0E-6 11.976E-6 5.854E-6 2.118E-6 1.11E-6 458.884E-9 238.054E-9 104.087E-9 51.417E-9 24.229E-9

Analysis Views

Per CPU per Sent Message

Aggregate

Per CPU

Per Sent Message
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Busy Time - (App_Time * UCPU) / P s C
182.112E-3 133.304E-3 76.381E-3 74.077E-3 69.714E-3 88.198E-3 92.937E-3 113.729E-3 114.482E-3 213.57E-3

Idle Time - (App_Time * (1 -  UCPU)) / P s C
34.688E-3 18.696E-3 17.569E-3 16.648E-3 17.036E-3 22.865E-3 24.5E-3 42.99E-3 58.486E-3 138.384E-3

Busy Time - (App_Time * UCPU) / M s C
182.112E-3 84.584E-6 48.465E-6 26.83E-6 25.25E-6 22.351E-6 23.552E-6 22.165E-6 22.312E-6 33.814E-6

Idle Time - (App_Time * (1 -  UCPU)) / M s C
34.688E-3 11.863E-6 11.148E-6 6.03E-6 6.17E-6 5.794E-6 6.209E-6 8.378E-6 11.399E-6 21.91E-6

Busy Time - (App_Time * UCPU) / (P * M) s C
182.112E-3 42.292E-6 12.116E-6 3.354E-6 1.578E-6 698.472E-9 368.004E-9 173.164E-9 87.156E-9 66.043E-9

Idle Time -
(App_Time * (1 -  UCPU)) / (P * 

M)
s C

34.688E-3 5.931E-6 2.787E-6 753.714E-9 385.629E-9 181.077E-9 97.014E-9 65.457E-9 44.526E-9 42.793E-9

Switch Delay D0 L/BW  + Lat s CO
10.281E-6 27.872E-6 27.872E-6 19.21E-6 19.21E-6 15.773E-6 15.773E-6 14.134E-6 14.134E-6 13.089E-6

Customers N P # B
1.0E+0 2.0E+0 4.0E+0 8.0E+0 16.0E+0 32.0E+0 64.0E+0 128.0E+0 256.0E+0 512.0E+0

Centers K P + 2 # B
3.0E+0 4.0E+0 6.0E+0 10.0E+0 18.0E+0 34.0E+0 66.0E+0 130.0E+0 258.0E+0 514.0E+0

Switch Delay D0 L/BW  + Lat s B
000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU Service 
Demand Dk

(MPI_Time - MPI_Wait) / (P * 
M) = CPU Message Active s B

55.0E-6 11.976E-6 5.854E-6 2.118E-6 1.11E-6 458.884E-9 238.054E-9 104.087E-9 51.417E-9 24.229E-9

Computation 
Delay DP+1

(App_Time - MPI_Time) / M    
= MsgCompute s B

216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

System 
Response Time R - s R

216.8E-3 93.552E-6 57.83E-6 37.868E-6 39.031E-6 32.393E-6 33.439E-6 29.364E-6 28.98E-6 27.431E-6

Switch 
Response Time R0 - s R

000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU Response 
Time Rk - s R

55.0E-6 13.562E-6 8.231E-6 3.441E-6 1.927E-6 816.266E-9 431.168E-9 189.203E-9 93.873E-9 44.154E-9

Computation 
Response Time RP+1 - s R

216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

System 
Throughput X - msg/s R

4.613E+0 21.378E+3 69.168E+3 211.259E+3 409.927E+3 987.878E+3 1.914E+6 4.359E+6 8.834E+6 18.665E+6

Switch 
Utilization U0 - # R

000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU MPI 
Utilization Uk - # R

253.69E-6 256.019E-3 404.887E-3 447.36E-3 455.095E-3 453.321E-3 455.615E-3 453.716E-3 454.198E-3 452.229E-3
Total 
Computation 
Utilization

UP+1 - # R
999.746E-3 1.42E+0 1.723E+0 2.185E+0 3.363E+0 6.196E+0 11.186E+0 22.433E+0 43.713E+0 90.041E+0

Network View

Model View

Utilization Views

Per Network Switch

Per CPU

Per Sent Message

Per CPU per Sent Message

Model Inputs

Model Outputs
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App Time - 
Observed (Wall 
Clock)

AT* App_Time / P s CI
216.8E-3 152.0E-3 93.95E-3 90.725E-3 86.75E-3 111.063E-3 117.438E-3 156.719E-3 172.969E-3 351.953E-3

App Time - 
Model AT (R * M) / P s CR

216.8E-3 147.439E-3 91.14E-3 104.554E-3 107.765E-3 127.821E-3 131.951E-3 150.669E-3 148.696E-3 173.254E-3

Relative Error EAT (AT - AT*) / AT* % C
0.0% -3.0% -3.0% 15.2% 24.2% 15.1% 12.4% -3.9% -14.0% -50.8%

MPI Time - 
Observed MT* MPI_Time / P s CI

55.0E-6 47.31E-3 54.7E-3 62.175E-3 64.1E-3 86.313E-3 94.375E-3 130.313E-3 147.578E-3 321.484E-3

MPI Time - 
Model MT (Rk * M) + (R0 * M) / P s CR

55.0E-6 42.749E-3 51.89E-3 76.004E-3 85.115E-3 103.071E-3 108.889E-3 124.262E-3 123.306E-3 142.785E-3

Relative Error EMT (MT - MT*) / MT* % C
0.0% -9.6% -5.1% 22.2% 32.8% 19.4% 15.4% -4.6% -16.4% -55.6%

MPI_Wait Time - 
Estimated WT* MPI_Wait / P s C

000.0E+0 9.563E-3 17.798E-3 15.402E-3 15.056E-3 28.368E-3 34.256E-3 61.952E-3 80.041E-3 243.134E-3

MPI_Wait Time - 
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

429.573E-15 5.002E-3 14.989E-3 29.231E-3 36.072E-3 45.127E-3 48.77E-3 55.902E-3 55.768E-3 64.435E-3

Relative Error EWT (WT - WT*) / WT* % C
#DIV/0! -47.7% -15.8% 89.8% 139.6% 59.1% 42.4% -9.8% -30.3% -73.5%

Throughput - 
Observed X* M / AT* msg/s C

4.613E+0 20.737E+3 67.1E+3 243.461E+3 509.233E+3 1.137E+6 2.15E+6 4.191E+6 7.594E+6 9.188E+6

Throughput - 
Model X - msg/s R

4.613E+0 21.378E+3 69.168E+3 211.259E+3 409.927E+3 987.878E+3 1.914E+6 4.359E+6 8.834E+6 18.665E+6

Relative Error EX (X - X*) / X* % C
0.0% 3.1% 3.1% -13.2% -19.5% -13.1% -11.0% 4.0% 16.3% 103.1%

CPU Utilization - 
Observed U*

CPU - # A
840.0E-3 877.0E-3 813.0E-3 816.5E-3 803.625E-3 794.125E-3 791.375E-3 725.688E-3 661.867E-3 606.813E-3

CPU Utilization - 
Model UCPU (UP + 1 / P) + Uk # C

1.0E+0 966.076E-3 835.541E-3 720.424E-3 665.274E-3 646.95E-3 630.395E-3 628.977E-3 624.953E-3 628.091E-3

Relative Error ECPU (U - U*) / U* % C
19.0% 10.2% 2.8% -11.8% -17.2% -18.5% -20.3% -13.3% -5.6% 3.5%

MPI Wait - MPI_Wait s G
000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

MPI Active - MPI_Time - MPI_Wait s G
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Computation - Non-MPI Time s G
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

Switch Delay - R0 * M s G
000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

MPI Contention - (Rk - Dk) * M * P s G
429.573E-15 10.003E-3 59.955E-3 233.847E-3 577.15E-3 1.444E+0 3.121E+0 7.155E+0 14.277E+0 32.99E+0

MPI Active - Dk * M * P s G
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Compute Time - MsgCompute * M s G
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

Validation View

Graphical View

Modeled Component Time

Measured Component Time

MPI Active Time

CPU

MPI Wait Time

Throughput

Application (Wall Clock) Time

 
 

Types

A Auxillary calculation, done separately

B Values for building a model

C Calculated in this spreadsheet

G Ancillary calculation for grapic

I Input directly from measurement data

R Results from model

O Output for building a model

V Value for validating a model

Description
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Appendix C – Sample Component Time Bar Charts 

Below, we show alternate views of the component times shown in Chapter V, Section 

B for MCR.  These views show the aggregate values of the components as a single bar on 

the charts, with the outer bar representing the measured values from the target machine, 

and the inner bar representing the modeled values from QNM.  We have also generated 

similar graphics for ALC and the Keck Cluster, as well as graphics plotting the behavior 

of the various classes given a specific processor allocation. 

Modeled vs. Measured Aggregate Component Times
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Figure 55 – MCR Class S Component Times 
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Modeled vs. Measured Aggregate Component Times
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Figure 56 – MCR Class W Component Times 
 

Modeled vs. Measured Aggregate Component Times
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Figure 57 – MCR Class A Component Times 
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Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+0

40.0E+0

60.0E+0

80.0E+0

100.0E+0

120.0E+0

140.0E+0

160.0E+0

180.0E+0

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e 
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 58 – MCR Class B Component Times 
 

Modeled vs. Measured Aggregate Component Times
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Figure 59 – MCR Class C Component Times 
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Modeled vs. Measured Aggregate Component Times
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Figure 60 – MCR Class D Component Times 
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